
www.manaraa.com

Rochester Institute of Technology
RIT Scholar Works

Theses Thesis/Dissertation Collections

8-12-1985

Access control models: Authorization mechanisms
for database management systems
Diana Anglero

Follow this and additional works at: http://scholarworks.rit.edu/theses

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion
in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Anglero, Diana, "Access control models: Authorization mechanisms for database management systems" (1985). Thesis. Rochester
Institute of Technology. Accessed from

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Ftheses%2F5752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/etd_collections?utm_source=scholarworks.rit.edu%2Ftheses%2F5752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses/5752?utm_source=scholarworks.rit.edu%2Ftheses%2F5752&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

www.manaraa.com

Rochester Institute of Technology
School of Computer Science and Technology

Access Control Models:
Authorization Mechanisms for Database Management Systems

by ,
Diana Anglero

A Thesis, submitted to
The Faculty of the School of Computer Science and Technology,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Approved by:
Profassor Henry A. Etlinger

Professor Jeffrey Lasky

Professor Peter S. Anderson

www.manaraa.com

Table of Contents

1. Introduction 1

2. Concepts. 3

2. 1 . Authent icat ion Methods. 3

2. 1. 1. Ident if icat ion. 3

2. 1 . 2. Authent icat ion 4

2.2. Entities 8

2. 2. 1. Subjects 8

2. 2. 2. Objects 12

2. 2. 3. Privi leges 16

2. 3. Security Principles . 23

2.3.1. Design Policies 23

2. 3. 2. Administrat i ve Pol icies. 6

2.3.3. Access-control specifications Policies. .33

3. Models 36

3.1. Access Matrix 37

3.1.1. Authorization List 44

3.1.2. Capability List 45

3. 2. Directed Graph Model 46

3.2. 1 . Take-Grant 46

3. 2. 2. Grant-Revoke 50

3.3. Query Modification 54

3.4. Lattice Model 57

4. Systems 61

www.manaraa.com

1 1

4. 1 . INGRES 62

4. 2. DBS 72

4. 3. System/38 84

4. 4. Comparison of systems 94

5. Conclusions 102

5. 1. Concluding remarks 102

5. 2. Future Trends 109

6. Appendix I -

Glossary 112

7. Bibl iography 116

www.manaraa.com

Data security is a major concern in computer systems

today. Data security is a crucial issue in data management

systems (DBMS)
,
more important than in any other type of

software. While the database approach brings advantages to

the user, it also creates new, more intense problems in

the areas of security and integrity. In the traditional

approach, where each application system has its own files,

a limited amount of data sharing is achieved by passing

files from one system to another. Typically a database

contains data of various degrees of importance and levels

of sensitivity. This data is shared among a wide variety

of users with different responsibilities and privileges.

Therefore it becomes important to restrict database users

to those portions of the total data that are necessary to

their activities. Additionally, more control is needed

over what changes a user can make to data because of the

many ways these changes can affect other users of the

database. This increased level of sharing means that

access to the data must be controlled in order to ensure

security and privacy.

Maintaining security of the database can be viewed as

protecting the data against illegal or invalid retrieval,

modification, or destruction. This may be achieved by a

set of access control rules. The effectiveness of access

www.manaraa.com

2

controls rests on two premises. The first is proper user

identification: no one should be able to acquire the

access rights of another. This premise is met through

authentication procedures at login. The second premise is

that information specifying the access rights of each user

or program is protected from unauthorized modification.

This premise is met by controlling access to system

objects as well as to user objects.

This paper presents various models to enforce access

control rules. First some conceptual ideas are introduced.

Then an exposition of the models used most often is made.

These include access matrix, authorization list (access

list), capability list,
take

grant and query modification.

Finally, the protection mechanisms of three systems,

INGRES, DB2, and System/38 are analyzed. These three sys

tems were chosen because they represent three different

approaches. The first deals with the problem by using

query-modification and access control lists; the second

uses a combination of access control lists, a hierarchy

and view mechanisms to provide security; abd the third

uses capability list and enforces access control at a most

lower level, at the hardware, microcode level.

www.manaraa.com

2. Concegts

* i- 9y*.t2eDtiEi.iQD Methods

The first step in a security mechanism of any kind is

to identify the person who is trying to gain access to or

use the object one is guarding. In a database management

system where a high level of data sharing is implied, this

identification becomes essential. Various methods for ver

ifying the identity of users, or authenticating them, will

be explored.

Before discussing authentication methods, it is

necessary to understand the interactions between identifi

cation, authentication, and authorization, all of which

together determine what access is granted to protected

resources. Identification is a unique name or number

assigned to subjects (users); authentication verifies that

a person or subject is who he, she or it claims to be; and

authorization is whether a person or subject is legiti

mately entitled to a protected resource. All of these are

used together to make access decisions.

i* ! Identification

In our context a user can be a person, any member of

a group of persons associated with some common project or

assignment, any member of a category of persons sharing

www.manaraa.com

some common attribute, or a program acting on behalf of a

person, group or category of persons.

The identification of a user, program or other sub

ject is the unique name or number assigned to that sub

ject. It is only a
"claim"

of identity. Identification is

necessary for accounting and authorization purposes, but

cannot be used without additional authentication if some

degree of security is desired in a system.

2. 1. 2. Authentication

Authentication verifies that a person (subject) is

who he, she or it claims to be. There are several types of

information which may be required before an identification

is accepted as valid. While authentication is generally

done once, periodic verifications may be required in high

security installations, and reauthent icat ion may be desir

able after all system crashes.

There are three approaches to authentication of iden

tity and they invoke something the user "knows", something

the user
"has"

or something the user "is". Authentication

by something the user knows is the cheapest scheme and

currently the most widely used. The technique most com

monly used is a password.

www.manaraa.com

The password method requires the user to provide a

string of characters for the computer to check. If the

password matches the one that the computer already associ

ates with a given user, access is permitted to all the

information that is authorized to that user.

In a simple password scheme the user is allowed to

choose a password that is easy for him to remember. The

advantage of this scheme is that the user should not need

to write it down where someone can see it. But care must

be taken not to choose a password which is too obvious, or

one which anyone who has knowledge of the user can deter

mine with a few guesses.

A way to avoid this is to assign the user a randomly

generated password. The problem here is that such a pass

word could be difficult to memorize and the user will tend

to write it down. One solution to this is to provide a

generator of
"pronounceable"

random passwords. Multics

CSALT743, for example, generates an eight -character pass

word which has English-like characteristics, so it is both

pronounceable and easy to memorize.

Another technique sometimes used is to put spaces and

backspaces in the password CH0FF77] . This will prevent

anyone who finds a password written in a piece of paper to

use it correctly.

www.manaraa.com

The password schemes mentioned above are all suscep

tible to wiretapping. There are three ways to overcome

this: to use cryptographic techniques, one-time passwords

and transformation techniques. For the one-time method,

the user is given a list of N passwords; the same N pass

words are stored in the computer. After using a password

for login the user crosses it off the list. The next login

requires use of the next password on the list. But this

approach may not be feasible on highly used systems, where

either there are many users or each user signs on quite

often. Also, if used, the user must remember or carry the

entire password list and must also keep track of the

current password.

The transformation technique consists of the user

remembering and performing an algebraic transformation on

a string of random digits. The computer supplies the ran

dom digits. The user does the transformation and returns

the answer. The computer also does the transformation and

compares the answers. If they agree the authentication is

successful and the user is allowed access.

Another method used to verify the identity of a user

is through the quest
ionanswer method. A set of answers to

"m"
standard and

"n"
user supplied questions is stored in

the computer. When the user attempts to login, some (or

all) of these questions are chosen at random and asked by

www.manaraa.com

the system. The user must answer all the questions

correctly in order to be granted access to the system.

The techniques discussed above fall under the

category of something the user "knows". But as already

mentioned, the authentication could also be made through

something the user "has". The most common in this category

are badges and cards. Cards may contain optical bar codes

or a Hollerith code. Plastic cards with a magnetic strip

or implanted magnetic slug may also be used CHSIA793.

These cards can be inserted into a terminal for identifi

cation. They can be designed to resist forgers and,

although they can be given to others or be lost or stolen,

their possession can be made mandatory and is easy to

check. For example, the cards may be assigned additional

functions such as operating a
card

key lock to gain access

to the terminal room.

The use of personal characteristics, or something the

user "is", is the most expensive way of authenticating

users and, to date, the least developed CWAKE773 . Some of

the techniques explored are physical appearance like ana

tomical measures (weight, height) and hand geometry; voice

recognition, where the relative energy content of each of

several voice frequencies is measured (the resulting fre

quency profile is matched against those of persons seeking

access) ; signature verification; and fingerprint analysis.

www.manaraa.com

a

All these techniques involve the use of complex dev

ices, and considerable processing time and storage space

may be required. At present they are considered too costly

for general applications, but future advances in hardware

technology may facilitate their use.

2. 2. Entities

All the access control models or mechanisms to be

discussed try to explain the relationship between users,

the data stored in the database and the privileges of

access the users have over the data. As a mode of general

ization, these three components will be referred to as

subjects (s), objects (o) , and privileges (p). Other com

ponents may be included in some of the models (e.g. flags,

predicates), but these three are the most essential and

are expressed in some way or another in all models. The

choice of the subjects, objects, and privileges or rules

of a protection system is at the discretion of the system

designer and will be made to meet the protection and shar

ing requirements of the given system.

. 2 . i . Subjects

A subject is any person or other entity that can

request access to a protected object. The most important

subjects are the "users", particularly the end users, of

the database. There may be a directory of users, which may

www.manaraa.com

contain user profiles that describe attributes of users.

Such attributes can define access rights or default

authorization characteristics. This information is also

used for evaluation of requests or of content -dependent

access rules.

There are two types of subjects, one is the user per

se and the other the administrator. Users are the subjects

that usually provide the data to be stored in the database

or that request data from the database in order to make

further decisions. The end user is the class of user that

is of the most concern with regard to security, because

the end user is usually separated from the system and

therefore less subject to physical, personal, or pro

cedural security. Some end users may be limited to

specific data because of the organization they work for,

or the organization from where the data originated.

On the other hand there is an administrator of the

database (one person or a group of persons), who has such

responsibilities as creating the databases of the system

(though not for placing data in them) or determining the

name, number, and size of the various files or relations

to be placed in the permanent databases. The administrator

is also responsible for maintaining and reorganizing the

database so that it performs in the most efficient manner.

He may be responsible for defining the security system,

www.manaraa.com

10

the protection data and the enforcement rules. This last

responsibility may also be assigned to a different person

such as a System Security Officer.

The separation of these two kinds of users is not

always obvious. In a small environment there may be no

such distinction. But then, further problems may arise,

like the conflict of ownership (this will be discussed

later in the section of Administrative policies).

Distinguishing users from administrators may make the

task of security enforcement much easier. The authorizer' s

job may be simplified even more by the definition of

"groups"
or

"classes"
of users. When a user group is given

access rights, all users belonging to the group receive

those rights. Subsequently, a user who joins a group

automatically receives all the rights of the group.

A user group is simply a named collection of users,

each of which has previously been defined to the system.

Consider the following example:

DEFINE USERS (SMITH, DOE, JONES)

DEFINE GROUP (PR0J1) USERS (SMITH, DOE)

DEFINE GROUP (PR0J2) USERS (DOE, JONES)

In the example, two user groups called PR0J1 and

PR0J2 are defined, PR0J1 consists of the users SMITH and

DOE, and PR0J2 consists of the users DOE and JONES. When

www.manaraa.com

11

the user JONES enters the system he may access any objects

authorized either to JONES or to PR0J2.

The concept of user groups is extremely useful for

implementing organizational concepts, such as department

or project, within the security framework. The implementa

tion of the concept of user groups should require the user

to identify his group membership before the execution of

his job begins. If a user who is a member of one or more

groups enters a job with no group identification he should

be granted access only to those objects explicitly author

ized to him. In this way the user may, for example, test a

program on his files without endangering files belonging

to the entire group.

One can also treat transactions or application pro

grams as subjects and control their access to data. An

application is a set of transactions or programs that

accomplish related functions. If users belong to more than

one group or use more than one application, their rights

at any moment may depend on both their identity and the

group or application. One way of expressing this require

ment is to use the group name or application name in the

predicate of an access rule. For example SMITH may be

allowed access to SALARY only when using the PAYROLL

application. Another way is to make the subject a "com

ponent", such as (user, group) or (user, application)

www.manaraa.com

12

CFERN813. The composite's rights can be granted explicitly

or can be calculated from individual and group rights.

2. g. 2. Objects

Objects are the things in the system which have to be

protected. Some of the most important concerns in authori

zation have to do with the choice of objects to protect.

Some of the points to consider are:

- The level of the objects to be protected (external

schema, conceptual schema or internal schema).

The size of the unit of protection (file, record,

field).

- Protection through view, if the concept of view

exists in the system.

- Protection of data description. Some systems separate

data from description of data.

(a) Level of objects

The protected objects are at all levels (external,

conceptual and internal), but the access rules should be

specified at the conceptual level. This is so because

access rules specified for the conceptual level apply

regardless of how those objects are viewed or used by dif

ferent applications. If there is a need to specify

www.manaraa.com

13

external access rules these should be consistent with the

rules derived from the conceptual level access rules.

(b) Granularity

A commonly used level of granularity is the file

level (relation, or record type). Sometimes a larger

granularity will be sufficient, and groups of files are

protected as a single object. The groups can be defined in

various ways such as: a subtree of a hierarchical direc

tory structure, an explicit naming of group members,

storage in the same physical area or common name portions

in a multipart name.

Any number of defined files could be collected

within, a named group, and a defined file could be allowed

to be a member of more than one group. For example:

DEFINE FILES (ABC, DEF, XYZ)

DEFINE GROUP (PAYROLL) FILES (ABC, DEF)

DEFINE GROUP (PERSONNEL) FILES (DEF, XYZ)

The concept of file groups is extremely useful to accommo

date the notion of departmental files, the files of an

individual, and the like.

But file level control does not always suffice. As

will be explained later (Policies section) there is a need

in many situations for policies of field-level control and

content -dependent control. Control could be specified at

www.manaraa.com

14

the record or field level as needed. One approach to

field-level access control is to write rules about "field

types", and to derive from them the rules about columns or

fields. The problem with this approach is that the same

field type may have a different meaning in different rela

tions, and automatic derivation would be inappropiate. For

example, suppose that a field type named SALARY appears in

two relations: EMPLOYEE (NAME, SALARY) and LIMIT (JOBNAME,

SALARY). A personnel department employee might need access

to SALARY in the LIMIT relation but should not be allowed

to know individual salaries.
Field- level access rules

therefore must have as their objects the fields of a file

or relation.

(c) Views as objects

One way to provide authorization with finer granular

ity is to define tailored views for different users

according to their needs and then control access to the

views. Because the views can be used to create a subset of

the rows of a relation, a subset of the columns of a rela

tion or a subset of a combination of rows and columns, the

view can be used effectively to screen parts of a table

that a user should not see.

There may be some restrictions on the way a user can

manipulate the data accessible to him through a view. Even

www.manaraa.com

15

if he has some rights to the views he creates these may be

limited. Certain operations, for example, creation of an

index, or update to a
"statistical"

view, may not be pei

formed on the view. A user's rights are also limited to

the ones he possesses regarding the underlying relation

from which he creates new views. For example, if he has

read-only access to a relation he should have read-only

access to any view he defines on top of it. If the view

involves more than one underlying relation, the user's

privileges may be constrained by the intersection of the

privileges which he holds on the underlying relations.

(d) Data Description as objects

The description of an object and the values of that

object are conceptually distinct, and access to them could

be separately controlled. The security control of data

description should be assigned to an administrator rather

than to end
users.

Transactions and programs were considered subjects,

receiving access rights according to their purposes. But

it is also necessary to control access to them, since they

indirectly provide access to data objects. Users could be

authorized RUN or EXECUTE privileges to programs or tran

sact ions.

www.manaraa.com

16

2.2.3. Pciviigagg

The third component of the protection system is the

privilege, expressed as a rule, which determine the

accessing of objects by subjects. The rules are the heart

of the access control mechanism of the database management

system. The rules must be simple, allowing users to gain

an immediate understanding of their scope and use. They

must be complete, not allowing a subject to gain unauthor

ized access to an object. They must be flexible, providing

mechanisms which easily allow the desired degree of

authorized sharing of objects among subjects. They must be

easy to change so as to prevent the user from avoiding

them or giving more access than necessary.

(a) Access types

In the database there is a set of operations which

can be performed on each category of objects. These allow

able operations form a set of possible access types, and

access rules grant a subset of them to specific subjects.

Some of the categories in which the rules can be based

are:

(1) Zero-level access

The subject can do nothing with the object. Most

probably it implies that his authority has been revoked.

www.manaraa.com

17

As far as the subject is concerned that object does not

exist for him any more.

(2) Execute
only access

This access rule applies to programs or transactions.

It means the subject can execute the program but he will

not be permitted to read the instruction sequence or to

modify it in any way. It could be specified with commands

like RUN or EXECUTE.

(3) Read
only access

The subject is allowed only to retrieve the object.

He is not permitted to manipulate or alter data in any

way. The subject could be allowed to use a command like

READ, or to apply statistical operators such as AVErage.

(4) Read-write access

With this privilege the subject is allowed to update

or change the information in the object, through commands

like UPDATE, WRITE, INSERT.

(5) Create objects

The subject is granted the privilege to create

objects and may also have the privilege to delete them

(DEFINE, CREATE and DELETE or DROP). The subject may then

be assigned an
"owner"

privilege over those objects he

www.manaraa.com

18

creates, which allows him to grant some privileges to

other users over the objects he "owns".

(6) Grant and Revoke

A subject who owns an object (as mentioned above) or

that was granted some privileges over a given object may

have the right to grant some privileges to other users. If

he does not own the object he must have been granted some

privileges with the option to
"grant"

them. Typically a

subject grants to others a set of the privileges he

possesses. These may include:

READ - the ability to read the object and the ability

to define views based on the table (if it is a
rela-

t iona 1 syst em) .

INSERT -

ability to insert records or rows in the

file or relation.

DELETE -

ability to delete records from the file.

UPDATE -

ability to modify existing data in the file.

GRANT - the ability to further grant privileges to

others.

Depending on the way the rules are to be implemented

the GRANT privilege could be specified by a "copy
flag"

or

by a command 1 i ke :

www.manaraa.com

19

GRANT

ALL RIGHTS

(privileges)

ALL BUT (privileges)

ON (object) TO (user-id>

CWITH GRANT OPTION]

REVOKE is a privilege which usually goes together

with GRANT. It is the privilege that gives the holder the

ability to revoke the authorities granted. Only the gran

tor may revoke access, so REVOKE implies GRANT.

The problem with revocation is its propagation. Con

sideration should be given to the way it is going to

affect privileges of other users. For example, if a user Y

revokes some privileges from user X in a lower level on

the hierarchical structure, other users below X to whom X

granted some privileges could loose all their privileges.

Another approach is to let them keep the privileges and

make Y responsible and decide which of the privileges, if

any, should also be revoked.

As previously discussed, subjects may be separated

into end-users and administrators. If the security struc

ture one wants to implement calls for the specification of

an administrator, then the mechanism must provide to these

administrators a set of
"control"

or
"administer"

privileges to help them achieve their function.

www.manaraa.com

20

The most common rights given to an administrator are

GRANT and REVOKE. Others could be the rights to DEFINE and

DELETE objects (e. g databases, relations, files). Once he

creates objects, as databases, he can delegate rights to

users through the GRANT right, and he then has the author

ity to remove these rights from them if necessary. Depend

ing on the structure (e. g. hierarchy) and needs of the

installation, administrators may not receive rights to

actually manipulate the data in the databases (READ,

INSERT, UPDATE). In this way his function is limited only

to CONTROL or ADMINISTER objects in the database.

(b) The use of predicates for control

Finer granularity could be desired when specifying

access rules. An access decision may need to be based in

more than just controlling access to a record or field. It

may be necessary to consider the value of the fields. The

contentdependent and context-dependent policies, to be

discussed later, are some of the situations which require

this type of control. For content -dependent access control

the authorizer defines predicates whose evaluation depends

on the contents of the database or on system variables

such as time of day or terminal ID. The predicate

DEPT -
"MATH"

AND TIME-OF-DAY >
"1200"

www.manaraa.com

21

would allow access only to the MATH department records and

only after noon.

Suppose one wishes to restrict a certain set of users

from accessing the field EMPNO together with SALARY

(context-dependent access control). In other words,

although the users have separate access to both fields,

they should not be able to deduce the salaries of indivi

dual employees. One could write this constraint as

NOT (EMPNO, SALARY)

in the rule specifying access to the EMPLOYEE relation.

Any access rules specified for views defined on the

EMPLOYEE relation then have to be checked for consistency

with this constraint. Since NAME also uniquely identifies

the employee the constraint should be extended as:

NOT (EMPNO, SALARY) AND NOT (NAME, SALARY)

The language used to express these predicates usually

provides for key words like WHERE. For example a predicate

could test a data value, WHERE (COURSE. DEPT 'MATH'), or

test for the value of some system variable, such as WHERE

(SYSTEM. USER_ ID 'JONES').

Predicates are the mechanism used on the DBMS that

utilize views to enforce access rules. A predicate is used

in the definition of the view to select specific records

www.manaraa.com

22

or fields to be included in the user view. For exampli

DEFINE MY_DEPT VIEW AS:

SELECT EMP, LOC

WHERE EMP. DEPT LOC. DEPT

AND EMP. MGR = USER

This view is built from the join of two base relations EMP

and LOC. It allows one to see the name, salary, manager,

department and location of each employee who reports

directly to the user of the view.

(c) Authorization time

Some of the access rules could be enforced at

compi lat iontime. But others like the content -dependent

and context-dependent rules have to be enforced at execu

tion time. These rules require that the data be read and

evaluated. It is not until the values of the data are

retrieved that the decision to grant or deny access can be

taken.

(d) Authorization by classification levels

In some installations such as military or government

ones, information is classified and users are assigned a

clearance according to their rank or position in a

hierarchical organization. Typical classification levels

might be top secret, secret, confidential and unclassi

fied. Objects are grouped in a set of categories. Access

www.manaraa.com

23

is defined by a combination of categories and classifica

tion levels. There are two fundamental security rules: (1)

no user can access (read) an object if the object's clas

sification level is greater than the user's clearance

level, and (2) only specially authorized users may reduce

(downgrade) or remove categories from a classified object.

2. 3. Security Princites

In order to understand any mechanism or model built

to enforce access control rules, it is convenient to point

out the principles behind those mechanisms. There is a

series of policies which serve as guidelines for the

development of security mechanisms. These policies are

given by user needs, the installation environment, insti

tutional regulations, and legal constraints. The princi

ples to be discussed are divided into three groups: design

policies, administration policies and access-control

specification policies.

2. 3. 1 . Design Policies

Salt zer and Schoeder identified several design prin

ciples for protection mechanisms CSALT753 :

(a) Least privilege

Every user and process of the system should have the

least set of access rights necessary to complete the job.

www.manaraa.com

4

This principle limits the damage that can result from

error or malicious attack. It implies that processes

should execute in "small protection
domains"

CDENN82J
,

consisting of only those rights needed to complete their

tasks. It also reduces the number of interactions among

programs. It reduces the number of possible sources for

information leaks and minimizes the possibility that the

integrity of the database be violated. Thus, if a question

arises related to misuse of a right, the number of pro

grams to be audited is minimized. This principle is simi

lar to the military security rule of need-to-know.

(b) Economy of mechanism

The design should be kept as simple and small as pos

sible so that it can be verified and correctly imple

mented. Although the system must be sufficiently flexible

to handle a variety of protection policies, it is better

to implement a simple mechanism that meets the require

ments of the system than it is to implement one with com

plicated features that may not be used.

(c) Complete mediation

Every access to every object must be checked for

authority. This principle is the basis of the protection

system. It implies that a method of identifying the source

of every request must be devised.

www.manaraa.com

25

(d) Open vs. closed design

The design should not be secret. Security should not

depend on the ignorance of the intruder, but rather on the

possession of specific, more easily protected keys or

passwords. This separation of protection mechanisms from

protection keys permit the mechanism to be examined

without concern that the safeguard will be endangered.

This principle becomes important also in a decentral

ized system, as it may not be realistic to maintain

secrecy in such a system.

(e) Least common mechanism

However, distributes security enforcement, so that no

one system function has major responsibility for all forms

of security enforcement.

(f) Fail safe

Base access decisions on permission rather than

exclusion. That is, access should be allowed only if

"explicitly
authorized"

instead of being allowed
"unless"

explicitly forbidden. So the default situation is lack of

access. In this way a design or implementation mistake in

a mechanism that gives explicit permission tends to fail

by refusing permission, a safe situation, since it will be

quickly detected. On the other hand, a design or

www.manaraa.com

26

implementation mistake in a mechanism that explicitly

excludes access tends to fail by allowing access, a

failure which may go unnoticed in normal use.

(g) Psychological acceptability

The mechanism must be easy to use so that it will be

applied correctly. It should provide a convenient inter

face for the user (or DBA) to permit an easy, consistent,

and efficient way of defining and maintaining the protec

tion data.

2. 3. 2. Administration Policies

(a) Ownership vs. Administration

The concept of ownership is important when dealing

with the transfer of privileges. A user can grant and deny

other users access to a data object if he is the owner of

the object. The owner of a database is sometimes con

sidered the person responsible for creating the data. To

become the owner of an object, the user must satisfy and

agree with a set of rules. At minimum he must have been

assigned the privilege to create objects. When a user

becomes an owner of an object, the system assigns an
"own"

attribute for the object as part of that user's

privi leges.

www.manaraa.com

27

However, with many shared databases, it may be diffi

cult to identify a unique owner. Even if there is or is

not a concept of ownership, there is always the need for

an administrative function, whose objective is to define

the data shared by the users and to control its use.

There could be then an administrator who
"owns"

all

databases, can perform all data management operations, may

authorize other users to use the databases and is subject

to further administrative rules. The owners, on the other

hand, own private databases, can perform all data manage

ment operations on their own databases, and may authorize

other users to access their databases. There may also be

some
non

owner users, who do not own a database, can pei

form only some data management operations and may not

authorize other users to use the databases.

In addition to this three-level hierarchy Hsiao iden

tifies two other types of organizations: a multi-level

sub-ownership authorization hierarchy, and
two- level

transfer ownership authorization hierarchy CHSIA783.

The multi-level sub-ownership hierarchy has the fol

lowing structure:

(1) Each database has an owner. The owner of a database

may assign a portion of the database to a user and

designate him as a subowner. The subowner can further

www.manaraa.com

28

divide his portion of the database into other objects

and designate others as subowners of the portions.

(2) Sub-ownership can only be removed by the owner who

originally authorized the sub-ownership.

(3) Ownership and sub-ownership can be established,

replaced and removed. However co-ownership is not

allowed.

(4) Owners or subowners can perform all the database

management operations on their private portions of

the database.

In this kind of hierarchy, at every level of data

objects (e.g. records, subfiles, files, databases), there

is some single user who is directly responsible for the

control of the object.

The two- level transfer-ownership hierarchy enables

the creator of a database to become the owner of the data

base, as already mentioned. The particularity of this

structure is that an owner can transfer the ownership of

his database to another user. Once he transfers ownership,

he no longer can access the database; he is not even a

user of the database. The advantage of this structure is

that there are not subowners, no co-owners, thereby avoid

ing the situation where two co-owners attempt to cancel or

www.manaraa.com

9

interfere with each other in terms of authorization.

(b) Centralization vs. Decentralization

A fundamental administrative policy is to choose

between centralized or decentralized security controls.

With centralized control, a single authorizer (or group)

controls all security aspects of the system. The central

ized approach has the psychological drawback that the cen

tral administrator has too much "power", and that the

"owner"
of the data can not control it. This may be the

approach taken in a small environment, but in a large or

complex database it could be more realistic and efficient

to have decentralized control. Decentralized control is

needed to place control of security at the level that is

most meaningful.

We have the situation where systems are becoming much

more dynamic. A large system typically has several groups

or users. Each group wants to share a central pool of

data. But also it wants to easily create and maintain

private data. The decentralization of authorization is

independent of whether the database itself is centralized

or distributed.

A model for decentralization of security functions

developed by Wood and Fernandez CW00D793 is presented.

This model takes an approach similar to the multi-level

www.manaraa.com

30

sub-ownership structure described in the preceding sec

tion.

The model distinguishes between two types of rights:

(1) administrative rights, are privileges to
"control"

other user's access to data; (2) access rights, are the

ones that allow the user to access and manipulate the data

in the files. The objects of delegation of authorization

functions are called "classes". A data class is a set of

data object occurrences. These classes could be parti

tioned into "subclasses".

In the model the structure of classes is described by

a "class structure
graph"

where nodes represent classes

and a directed arc from node
'i' to node

'j' indicates

that class
'j' is a member of class

' i'
. A user is given

ADMINISTER right to a class. An administrator of class D

may define subclasses of D and delegate his administra

tion.

The various rights associated with the task of

administration may be delegated separately or in groups.

These include:

al
- Right to create, delete and modify objects in D

a2
- Right to define and delete D

a3
- Right to authorize READ access to objects in D

a4
- Right to authorize DELETE access to objects in D

a5
- Right to authorize UPDATE access to objects in D

a&
- Right to authorize INSERT access to objects in D

a7
- Right to recall a delegated right for D

www.manaraa.com

31

Rights a2 thru a6 are called CONTROL (C) rights, and

al thru a6 ADMINISTER (A) rights. In the example the nota

tion (s, D, t, f) is used, where
' s' is the administrator

(or user),
' D' is a class (or subclass),

't' the right

type and
' f ' indicates if the administrator has the right

to further delegate (true or false).

(DBA1, Di, A, true)

^"""\^d2

(DBA2, D2, C, true) (DBA3, D3, C, false)

(DBA4, D4, a3, true)

d5

(U2, 01, READ, false)

(Ul, VI, READ, DELETE ,
fall

UPDATE, INSERT

Figure 1

Figure 1 shows a sequence of delegations dl to d5.

Administrator DBA1, with ADMINISTER access to class Dl and

with right to delegate, delegates to DBA2 the right to

CONTROL class D2 (with right to delegate), and to DBA3 the

right to CONTROL D3 (with no right to delegate). DBA2

delegates administration right a3 to DBA4 and gives user

Ul a set of access rights on view VI (an object in D2) .

DBA4 grants U2 read access to object 01 (of class D4) .

www.manaraa.com

32

As administration and database access are separate

functions, a reorganization of the administration function

should not mean that some users of the system can no

longer access the database. Only administrative rights are

revoked when a delegated class is recalled. Access rights

authorized by the DBA whose administrative rights were

revoked are not deleted but become the responsibility of

the recalling DBA. The new structure of the graph when

CONTROL right is revoked on class D from DBA2 is shown in

figure 2. The situation now is logically equivalent to

DBA1 having authorized all the access rules. As can be

seen user Ul and U2 are still authorized to access the

database.

(DBA1, Dl, A, true)

(U2, 01, READ, false)

d4

(DBA3, D2, C, false)

V

(Ul, Vi, READ, DELETE ,
false)

UPDATE, INSERT

Figure 2

In this model the delegation policy allows an

administrator to delegate the rights for a class to only

one administrator. If it is necessary to have multiple

administrators for some set of objects, then overlapping

classes must be defined and separately delegated. This

www.manaraa.com

33

avoids the situation where an administrator receives

administrative rights to a class from two different dele-

gators; thus revocation is simplified.

The concept of centralization and decentralization

has been referred in the literature also as discretionary

and non-discretionary controls. Discretionary implies that

the individual user may, at his own discretion, determine

who is authorized to access the objects he creates. If the

need arises to impose limits on the use of discretionary

controls, then these limits are viewed as
non-

discretionary. A combination of both types of controls can

be applied.

2. 3. 3. Access
control Goecification Policies

The granularity of access control desired will deter

mine the security measurements needed to be implemented.

It is crucial for the successful implementation of a

secure data management system that no user is given more

information about the structure or content of a database

than he is entitled to view. The existence of unviewable

fields as well as their content should be hidden from

users. It is much harder for a penetrator to obtain access

to secret data if he does not know of its existence or of

the name under which it is stored.

www.manaraa.com

34

(a) Namedependent access control

This is the minimum control requirement when specify

ing the data objects a user can access. Different levels

of granularity could be specified, the lowest or finest

one being field or item name (column, in a relational

database). It is sometimes referred as content -independent

access control because a decision on whether or not to

allow a data access can be made without using data values.

Security contraints that are independent of a particular

data value can have their access decision made once per

job execution.

(b) Content -dependent access control

Access rules could be extended by specifying control

depending on the value or content of a field. For example

restricting a particular user from seeing a field named

SALARY in every record of a file is independent of the

specific value in that field, while restricting a user

from seeing values of SALARY in excess of *10, 000 is a

content -dependent control.

Content -dependent control must be interpreted in a

general sense. The decision may depend upon the value of

any datum in the system and not just the particular datum

to which access is desired. For example, if a user is per

mitted access to salary data only between the hours of 9

www.manaraa.com

35

and 5, then the current time is the datum in which the

security decision depends. For this type of control, data

values must first be retrieved from the database in order

to determine whether or not the access request should be

satisfied. This implies that the enforcement will be per

formed at execution time and that the evaluation must be

repeated for each potential data element in the same

class.

(c) Context-dependent access control

The policy of context-dependent control refers to

using a combination of items. One aspect of this policy

restricts the fields that can be accessed together. For

example, in a relation containing employee names and

salaries, one may want to prevent some users from finding

the salaries of particular employees. One alternative

would be to prevent any access at all to those relations.

But to maximize sharing, one could allow separate access

to names and salaries while preventing users from access

ing them together. Another aspect of the policy is the

requirement that certain fields appear together.

(d) History-dependent access control

It may be necessary to control not only the context

in the immediate request, but also the content of previous

requests, if one wants to prevent users from making

www.manaraa.com

36

certain deductions. For example, let's suppose there is an

employee relation which contains a project-ident if ier

attribute; a user could list first all names and projects

and then all salaries and projects. He can then make some

correlation between names and salaries. Preventing this

kind of deduction requires history-dependent control,

which takes into account not only the context of the

immediate request but also all past requests. The current

access of the user is restricted because of accesses he

made in the past.

3. Models

Several models to express access control needs have

been developed. These models intend to aid the security

administrator or manager in charge of the system's secu

rity to express (or model) the relationship among sub

jects, objects, and access privileges the first ones have

over the latter. The models to be discussed use different

techniques to describe these relationships. Some use a

matrix (row, columns), or a variation of it; others use

directed graphs and others explicitly indicate the rules

using predicates.

Some of the models have gone beyond the phase of

modeling and have been implemented in more or less the

same way they are used to model the access control rules.

www.manaraa.com

37

These will be covered latter. Now an overall definition of

models used most often is presented.

3 ! Access tutrix

The access-matrix model provides a framework for

describing protection systems. The model was independently

developed by researchers in both the operating system area

and the database area. The model is defined in terms of

state and state transitions, where the state of a protec

tion system is represented by a matrix, and the state

transitions are described as commands.

The protection system comprises three parts, which

will be reflected as components of the model. The first

component is a set of 'objects', 0, an object being an

entity to which access must be controlled. Examples of

objects are files, relations, and fields. The second com

ponent is a set of 'subjects', S, a subject being an

active entity whose access to objects must be controlled.

The model assumes that subjects are considered to be

objects, thus, S L 0. The third component of the protec

tion system is the set of rules which govern the accessing

of objects by subjects.

All information specifying the type of access sub

jects have to objects is regarded as constituting a 'pro

tection
state'

of the system. This protection state is

www.manaraa.com

38

represented as an 'access matrix', A, with subjects iden

tifying the rows and objects the columns. The entry ACS, XI

contains strings, called 'access attributes'
specifying

the access privileges held by subject S to object X. If

string
'a'

appears in ACS, XI, then "S has 'a' access to

X". For example, in Figure 3, subject S , may read F.^ ,

since 'read'
appears in flCSt , Ft 3 , or, Sa may update Fa .

control owner owner read

write

execute

control owner update owner

control delete owner

Figure 3

Access Matrix

Graham and Denning C6RAH723 associate with each type

of object a
"monitor"

through which all accesses to

objects of that type must pass to be validated. Examples

of monitors are the file system for files, the hardware

for instructions execution and the protection system for

subjects (see Figure 4). An access proceeds as follow:

(1) S initiates access to X in manner 'a'.

(2) The computer system supplies the triple (S, a, X) to

the monitor of X.

www.manaraa.com

39

(3) The monitor of X interrogates the access matrix to

determine if *a' is in ACS, X] ; if it is, access is

permitted, otherwise, it is denied and a protection

violation occurs.

The access attributes are interpreted by object moni

tors at the times accesses are attempted. Figure 4 shows

the organization of the protection system. The mechanisms

between the dashed lines of the diagram are invisible to

subjects
-

subjects direct their references to objects
-

these references are then intercepted and validated by the

monitors of the system.

Subjects

read F

S.:

grant
' a' to Sj , X

delete b from Sp, Y

Syst em Intervent ion

Monitors

> I

I Objects
I-

(S-, read, F) File

System
iA

(S; , grant, a, Sh, X)

-s

(SK, delete, b, Sp, Y>A

Access

Matrix

Monitor

Access

Matrix fc4

Files
^

i,

V.

Figure 4

Organization of protection system

www.manaraa.com

40

The foregoing rules govern the use, by monitors, of

the access matrix, once it has been specified. There is

also a series of rules for changing the access matrix

itself. These rules will be enforced by the monitor of the

access matrix. Unlike the monitors of the system's

objects, the access matrix monitor may modify the access

matrix. In particular, it may transfer, grant, or delete

access attributes on command of subjects and only on

appropiate authorization. For this purpose attributes

'owner'
and

'control'
are introduced, as well as the

notion of a 'copy
flag' (denoted by an asterisk), and the

rules Rl - R3 of Table I, to be implemented by the access

matrix monitor.

Rule 1 permits a subject to transfer any access

attribute it holds for an object to any other subject,

provided the copy flag of the attribute is set, and it may

specify whether the copy flag of the transferred attribute

is to be set; in Figure 3, for example, S1 may place

'read*' in ACSa, F1 3 , but it may not transfer its ability

to execute T. to any other subject. Rule 2 permits a sub

ject to grant to any other subject access attributes to an

object it owns; in Figure 3, for example, S can grant any

type of access for SA to any subject. Rule 3 permits a sub

ject to delete any access attribute (or copy flag) from

the column of an object it owns, or the row of a subject

www.manaraa.com

41

it controls; in Figure 3, for example, S can delete any

entry from column Sa or S3 . In order to facilitate this, it

is required that 'control' be in ACS, S3 for every subject

S and rule R4 is included, which permits a subject to read

that portion of the access matrix which it owns or con

trols.

It should be noted that a subject may hold 'owner'

access to any object, but 'control'
access only to sub

jects. It is assumed that each subject is owned or con

trolled by at most one other subject.

If one wants to limit the number of outstanding

access attributes to a given object, e. g. if it is

required that each subject be owned by at most one other

subject, or that a given object be accessible to a limited

number of subjects, a
'transfer-only'

copy flag could be

introduced. Let's denote this flag by the symbol #. Then

in Rl the command to transfer 'a' (or a#) from SQ to S for

object X would be authorized if a# were in ACS0 , X3 and

would cause a# to be deleted from ACSa ,
X3 and

'a' (or a#)

be placed in ACS, X3.

The creation of a non-subject object, e.g. a file, is

straightforward, consisting of adding a new column to the

access matrix. The creator subject executes a command

(rule 5 of Table I) and is given
'owner'

access to the

www.manaraa.com

42

newly created object. It then may grant access attributes

to other subjects for the object according to rule R2. The

destruction of an object, permitted only to its owner,

corresponds to deleting the column from the access matrix

(R6).

Creating a subject consists of creating a row and a

column for the new subject in the access matrix, giving

the creator
'owner'

access to the new subject, and giving

the new subject
'control'

access to itself (rule R7). The

destruction of a subject, permitted only to its owner,

corresponds to deleting both the row and the column from

the access matrix (rule R8) .

In the access matrix model described so far, the

entry
'a' in the intersection of a given subject row and

object column implies that this type of access is granted

automatically to the corresponding request. Fernandez,

Summers and Coleman CFERN753 extend this concept in order

to include arbitrary predicates which participate in the

decision. In other words, the entry in the intersection of

subject S and object X may contain a predicate P, that may

depend on any data in the system, that must be satisfied

in order for access of type
'a' to be granted. Access can

then be described as

a

> X

www.manaraa.com

43

Table I

Rule Command (by S,) Authorization Operat ion

Rl transfer fa*] to S, X a* in ACS,, , X3 store la*\ in ACS, X3

R2 grant fa*) to S, X 'owner' in ACS ,
X3 storefa*}

in ACS, X3

R3 delete a from S, X 'control' in ACS0
or

,
S3 delete a from ACS, X3

'owner' in ACS ,
X3

R4 w = read S, X 'control' in ACSe
or

,
S3 copy ACS,X3 into w

'owner' in ACS0 , X3

R5 create object X none add column for X to A;

store
'owner' in

ACS, X3

R6 destroy object X 'owner' in ACS ,
X3 delete column for X

from A

R7 create subject S none add row for S to A;

execute 'create object
S'

store
'control' in ACS, S3

R8 destroy subject S
'owner' in ACS0, S3 delete row for S from A;

execute 'destroy object
S'

i

In actual computer systems, the access matrix would

be very sparse if it were implemented as a two dimensional

array. In most real world data processing situations the

number of users (subjects) would be substantial, and the

number of objects would be extremely large. The authoriza

tion matrix can usually be compressed to a reasonable

size by some or all of the following methods:

www.manaraa.com

44

(1) defining groups of "virtual'

users, each representing

a group of users with identical security
authoriza-

t ion.

(2) grouping the data elements (objects) into a number of

data security categories.

(3) storing a list of pairs (user, permission) for each

data element.

(4) storing a list of pairs (data element, permission)

for each user.

The last two are to be covered next.

3. ! i. Authorization Uist

An authorization list (also called access-control

list) is a list of n subjects who are authorized to access

some particular object X. The i-th entry in the list gives

the name of a subject S*u and the right r^ in ACS, X3 of

the access matrix. An authorization list, therefore

represents the nonempty entries in column X of the access

matrix.

Authorization lists are typically used to protect

owned objects such as files. Each file has an authoriza

tion list specifying the names (or IDs) of users or user

groups and the access rights permitted to each (see Figure

www.manaraa.com

45

5). The owner of a file has the sole authority to grant

access rights to the file to other users; no other user

with access to the file can confer these rights on another

user (the copy flag is off). The owner can revoke (or

decrease) the access rights of any user simply by deleting

(or modifying) the user's entry in the authorization list.

File directory

User Id Right

ART

PAT

ROY

SAM

Own, RW

RW

R

R

Authorization List for F

Figure 5

Authorization list for a file

3. 1 . 2. Cap.abi.iity List

The storage of access information by row is called a

'capability
list'

or C-list. A capability list is a pair

(X, r) specifying the unique name of an object X and a set

of access rights r for X (some capabilities also specify

an object's type). The capability is a ticket in that pos

session unconditionally authorizes the holder r-access to

X. Once the capability is granted, no further validation

of access is required.

www.manaraa.com

46

Right Object

A

RE

R

R

RW

A

B

C

D

Woceuure

V data B>

data C

C-l ist ~~-~-^ldata D

Figure 6

Capability List

The C-l ist for a subject S is a list of n capabili

ties for the objects S is permitted to access, where r

gives the rights in ACS, X^ 3 of the access matrix. The C-

list for S, therefore represents the nonempty entries in

row S of the access matrix. Figure 6 illustrates a C-l ist

that provides read /execute access (RE) to the procedure A,

read-only-access (R) to data objects B and C, and
read-

write access (RW) to data object D.

3.2. Direct eg; Grajah Model

3. 2. 1- lake-Grant

Jones CJONE783 discussed the take-grant graph model

to describe a restricted class of protection system. As in

the access matrix model, a protection system is described

in terms of states and state transitions. A protection

state is described by a directed graph G, where the nodes

of the graph represent the active subjects and passive

www.manaraa.com

47

objects of the system. Subjects are represented by closed

circles as 0, and objects by open circles as O. Objects

not known to be either active or passive are notated with

slashed circles, Q) . Graphically, a right is notated by a

directed edge, labeled with a name. It is interpreted to

mean that the node at the tail of the edge has the named

right to the node at the head of the edge. The protection

state of a collection of subjects and objects is

represented as a finite graph; the graph is called a 'pro

tection graph'.

The graph in Figure 7 models a protection state in

which subject A has the right to perform operation
Fa'

on

subject B, which in turn has the right to perform
' b'

on

passive objects X and Y. In addition, B has ' f ' right to

Y.

B^

b f

Figure 7

Protect ion stat e

Arcs can be labeled with multiple labels. If a

directed arc is to be added between two objects for which

an edge with the same direction already exists, a single

edge labeled with the union of the existing label (s) and

www.manaraa.com

48

the new label (s) is used.

The takegrant model is intended to model the access

control mechanism of a system. In a system, the protection

state changes only when some subject invokes an operation

that is defined as part of the protection mechanism. In

the take-grant system, these operations are modeled by a

set of rewriting rules for protection graph transitions.

Because the protection state changes only by action of a

subject, the model will refer to a subject f exercising'

its rights or privileges. Consequently, in the model any

graph rewriting rules will always require at least the

precence of a subject; usually a subject must have a par

ticular right to some object as a prerequisite for a graph

transit ion.

There are two special rights 'take', denoted by the

label 't', and 'grant', denoted by the label fg'. For the

definition of the four rewrite rules, let A, X, and Y be

three distinct vertices in a protection graph, such that A

is a subject.

Take: Let there be an edge from A to X with at least a

label 't', and an edge from X to Y with any label

or set of labels 'a'. Then applying the Take rule,

add an edge from A to Y having label 'a' : "A takes

the right to perform
'a' to Y from

X"

(figure 8)

www.manaraa.com

49

-><Z> 2 CD

X
7

Y

Figure 8 - Take right

Grant: Let there be an edge from A to X with at least a

label fg', and an edge from A to Y labeled ra'
.

Then applying the Grant rule, add an edge from X

to Y having label fa'
: "A grants the right to per

form *a'
over Y to

X"
(figure 9)

Figure 9 - Grant right

Create: Let A be a subject and
fa'

a subset of rights.

Applying the Create rule, add a new vertex N such

that pa' labels the edge from A to N: "A creates

the subject or object N with
fa' right" (figure

10)

-><z>

A
7

A"

^N

Figure 10 - Create right

www.manaraa.com

50

Remove: Let there be an edge labeled ' f ' from subject A to

X. Let 'a' be any subset of rights. Applying the

Remove rule causes deletion of the 'a' labels from

*f. If f =
a, then the edge itself is deleted: "A

removes its right to 'a' X"

(figure 11)

^ cp m - - \x

A 'X A
7

X

Figure 11 - Remove right

3. 2. 2. Grant-Revoke

Griffiths and Wade CGRIF763 used the directed graph

model to define a dynamic authorization mechanism. A data

base user can grant or revoke privileges (such as to read,

insert, or delete) on a file he has created. Furthermore,

he can authorize others to grant these same privileges.

The database system keeps track of a directed graph of

granted privileges.

The nodes of the graph correspond to users, and the

edges correspond to grants. The edges are of two types,

corresponding to whether or not the recipient of the grant

has been given the option to make further grants of this

privilege. For each pair of A, B of nodes, there can be no

more than one edge of each type from A to B.

www.manaraa.com

51

The representation of grants is straightforward, an

edge is drawn from node A to node B if node A is granting

P privileges to node B. The problem arises when some of

the privileges have to be removed. The decision about

exactly which privileges are to be revoked is not obvious.

One might expect that if the revokee possesses other

grants of the revoked right, then recursive revocation

should not take place. The problem is that such an algo

rithm does not detect cycles in the chain of grants fol

lowing the revokee. The revocation algorithm must distin

guish between the two cases shown in Figure 12. Effec

tively the correct algorithm traces the grant chain from X

back to the creator of the object. If every such path

passes through the revoker, then X's privileges should be

revoked. However, if there exists a path back to the crea

tor which does not pass through the revoker, then X should

retain the privileges after the revoke.

www.manaraa.com

52

/r20.

30_
40-"~^^

Figure 12

Effect of revocation of privileges

To decide whether to revoke recursively or not, each

edge is labeled with a timestamp. The timestamp may

represent real time or it may be a system maintained

counter- No two grant commands could be tagged with the

same timestamp. If the same privilege is granted by the

same grantor to the same user on the same object, then the

earlier timestamp is maintained. The duplicate later grant

is not recorded in the graph. This condition was proved by

Fagin CFAGI783 to be a flaw in the design since it could

forbid some user from exercising or granting a privilege

he
"should"

be allowed to exercise or grant.

Let's assume that user A is the creator of file f,

and that a number of grants, each with grant option (copy

flag on), of privileges P over file F take place as in

Figure 13(a). For example user A grants user B privilege P

www.manaraa.com

53

at time 10, user B grants user C privilege P at time 20,

and so on. Note that C grants D privilege P both at time

30 and at time 60. Under the original model the second

grant from C to D is ignored, and so, after time 60 only

the grants in Figure 13(b) are included in the graph.

Assume now that at time 70 user B revokes privilege P

from user C. On the original model the recursive revoca

tion will be as follows: On step 1 the grant from B to C

is deleted. Then, the earliest remaining grant to C has

timestamp 40. So on step 2, the revocation algorithm

deletes the grant from C to D, since the timestamp (30) of

this later grant is smaller that 40. Similarly, on the

last step, the grant from D to E is deleted. Thus, under

the original mechanism the final authorization graph will

look like Figure 13(c). In particular the system no longer

authorizes user D to exercise privilege P. However, user D

should be allowed privilege P, since there was a grant

from A to C at time 40, and from C to D at time 60.

Under the modified mechanism, on step 1 of the revo

cation mechanism, after the revocation by B at time 70,

the grant from B to C is deleted. Then the earliest

remaining grant to C has timestamp 40. So on step 2 the

grant from C to D with timestamp 30 is deleted (but the

grant from C to D with timestamp 60 is not deleted). On

the last step, the grant from D to E is deleted. The final

www.manaraa.com

54

SB)

10"

ae

(a) @I 40 ^~~^@ 50 #D

d

10 20

(b) (gC 40 3(C) 30 yg) 50)(E

10

(c) (A) 40 ig)

10

(d) (@ 40 :> ,60^6)

Figure 13

Recursive revocation of privileges

resulting graph contains the grants in Figure 13(d). So

after time 70, user D is authorized to exercise (and to

grant) privilege P, as he should.

3. 3. Query Modification

The 'Query
Modification' is a mechanism which is

applicable at a high-level, user interface. The basic

notion pursued is one of interaction modification. Users

interact with a database through a high-level query

language. Any such interaction is immediately modified

www.manaraa.com

into an interaction which is compiled into a sequence of

simpler interactions, which are then executed without

further concern for access control.

Associated with each user is a list with entries of

the form (R, P) , where R is the name of a relation

(table), and P is a set of logical privileges or access

restrictions on R. The list is similar to a capability

list in that it defines a user's access rights to the

database. Each access restriction is of the form (f, S)
,

where S is an expression identifying a subset of R. It

authorizes the user to perform operation f on the subset

defined by S. If the user poses a query (f, R, E) the sys

tem modifies expression E according to the expression S.

That is, assume a list of restriction predicates pi,

p2, . . . pn. Then suppose the user issues a query G. The sys

tem changes the query into "Q & (pi I p2 I . . . I pn)
"

such

that only an authorized subset of what the user would have

retrieve is actually delivered to him. See Figure 14.

www.manaraa.com

56

al lowed

requested

Figure 1 4

Query modification access control scheme

For example consider the relation EMPLOYEE, with

attributes NAME, SALARY, MGR (manager), DEPT. A query to

retrieve the name and salary of all employees whose

manager is Jones would be:

Ql: RETRIEVE EMPLOYEE (NAME, SALARY) WHERE MGR - 'JONES'

Query Ql retrieves all tuples of EMPLOYEE that

satisfy the qualification (predicate). Suppose there is a

rule that permits the user to retrieve only the records of

employees in department Dl. Then the preceding request

would be modified to :

RETRIEVE EMPLOYEE (NAME, SALARY) WHERE MGR = 'JONES'

AND DEPT = 'Dl'

www.manaraa.com

57

3. 4. Lattice Model

The lattice model was motivated by the controls used

by the Department of Defense (DOD) and other national

security agencies to regulate people's access to sensitive

information. The DOD information security policy gives

each document a classification level, L, and a (possibly

empty) set of categories, C. The security levels are

strictly ordered. The categories tend to have no ordering

or precedence, but subsets of categories are ordered by

set inclusion. The combination of a classification level

and a set of categories is referred to as an 'access

class'. Figure 15 identifies the DOD classification levels

and their order, and some examples of categories.

Top Secret) Secret) Confidential) Unclassified

(a) Classification levels

Nuclear, Intelligence

(b) Example categories

Figure 15

DOD levels and categories

The classification levels and categories in the DOD

system are also used to label a set of clearances that can

be granted to users. There are two fundamental access

rules in the lattice model:

www.manaraa.com

58

(1) the 'simple security
property' -

no subject has read

access to any object that has a classification

greater that the clearance of the subject.

(2) the '*-property'
(pronounced 'star-property') -

no

subject has appendaccess to an object whose security

level is not at least the current security level of

the subject; no subject has read-write access to an

object whose security level is not equal to the

current security level of the subject; and no subject

has read access to an object whose security level is

not at most the current security level of the sub

ject.

A subject S may read an object 0 if

Ls 1 L0 & <C>S
3 (C>B

(a) Simple Security Property

A subject S may write an object 0 if

L (L & <C>Q ^ -CO

5 o S o

(b) *-property

Figure 16

Lattice Model Security Rules

Any attempt to apply the security lattice model to

non-DOD environments will try to identify levels and

categories that reflect the levels of sensitivity and

organizational division in the subject environment. For

www.manaraa.com

59

example, Figure 17 shows some possible levels and

categories identified in a corporation. The 'system-low'

level (SL) corresponds to unclassified in the DOD system,

and information at this level is readable by all users.

Security Levels: Audit-Manager (AM)

System-Low (SL)

Categories: Production-Data <PD)

Product ion-Code (PC)

Development (D)

SystemDevelopment (SD)

Tools (T)

Figure 17

Levels and categories

The application of the access classes to the system's

subjects is outlined in Figure 18. Users, application

developers and system programmers each have system low

security level and two categories. In each case the first

category
'C3' is that of the information they manipulate

(read-write), and the second
'
(> ' is that of the programs

the subjects can use. The audit and management subjects

have access to information of any category, and security

level of audit-manager. Finally a system control function

is defined with
system low and access to each category,

and
'downgrade' privilege to change categories.

www.manaraa.com

60

Subjects Access Class

System management or Audit AM; any set of categories

User SL; CPD3 (PO

Application developers SL; CD3 (T>

System programmer SL; CSD3 (T>

System control SL; CPC, PD, D, SD, T3 plus

'downgrade'
privilege

Figure 18

Users' Access Classes

The assingment of access classes to files (objects)

is given in Figure 19. The program objects (production

code, tools) each has a single category and are intended

to be read-only (unmodified). Objects that could be mani

pulated (production data, system and application programs

under development) have two categories each
- that of the

object itself
'C3'

and that of the program that operates

on it ' (> ' -

so that a subject executing the program will

be allowed by the *-property to write the object. Audit

trial information is developed with the category (ies) of

the activity being audited and is 'written up' to the

higher audit-manager security level.

www.manaraa.com

61

Fill Access Class

Production data SL; CPD3 (PO

Production code SL; CPC3

Developing code/test data SL; CD3 (T>

Software tools SL; CT3

Systems programs in modification SL; CSD3 (T)

System programs SL

System and application AM; (appropriate categories)

Audit Trial

Figure 19

File Access Class Assingment

The overall effect of the configuration of access

classes described above is shown in Figure 20.

^~-~~~~-Qbject s

Sub.iec^fS -_

Prod.

Data

Prod.

Code

Dev.

Add. Pro-

Dev.

Sys. Pro. Tools

Sys

Pro.

Audit

Trail

System Mgt.

and Audit

R R R R R R RW

Product ion

users

RW R R W

Appl icat ion

Programmer

RW R R W

System

Programs

RW R R W

System

Control

RW RW RW RW RW RW W

Figure 20

Effect of Lattice Model specifications

4. Systems

www.manaraa.com

62

! INGRES

INGRES (Interactive Graphics and Retrieval System) is

a relational database system which is implemented on top

of the UNIX operating system. INGRES introduced a way to

implement fine grain access control using a technique

called 'Query Modification'. A brief description of the

INGRES system and its operational environment is first

presented to provide a background for the discussion of

the protection scheme.

The user interface for INGRES consists of the data

sublanguage QUEL (QUEry Language). QUEL is a complete

query language in that it frees the programmer from con

cern for how data structures are implemented and what

algorithms are operating on stored data. It is a nonpro

cedural language which has points in common with some

relational calculus based languages such as Data

Language/ALPHA. It does not use calculus quantifiers and

so, is considered by its designers to be a language based

on functions and not on a first order predicate calculus

CST0N76b3. The QUEL examples in this section concern the

following relations

EMPLOYEE (NAME, DEPT, SALARY, MANAGER, AGE)

DEPT (DEPT, FLOOR*)

www.manaraa.com

63

A QUEL interaction includes at least one RANGE state

ment of the form

RANGE OF variable-list IS relation-name

The purpose of this statement is to specify the rela

tion over which each variable ranges. The interaction also

includes one or more statements of the form:

Command (target-list) CWHERE qual if icat ion3

Here,
'Command' is either RETRIEVE, APPEND, REPLACE,

or DELETE. For example, a query to retrieve the names and

salaries of all employees whose manager is JONES would be:

RANGE OF E IS EMPLOYEE

RETRIEVE (E. NAME, E. SALARY)

WHERE E. MGR = ' JONES'

In addition to the above QUEL commands INGRES also

supports a variety of utility commands. The only ones of

interest in a protection context are COPY, PRINT and

CREATE. The COPY command transfers a relation to or from a

UNIX file. It is a 'bulk
transfer'

mechanism and therefore

must be protected. PRINT is a simple report generator that

writes a relation onto a user's terminal. CREATE sets up

an empty relation and prepares it for use.

INGRES manages a collection of databases, each of

which is made up of a set of relations. Each database is

www.manaraa.com

64

associated with a special user called the Data Base

Administrator (DBA). A list of allowable DBAs is kept in

INGRES.

Only a database's DBA may create shared relations in

that database. Relations created by other users are

guaranteed private by INGRES. The invoker of the CREATE

command becomes the 'owner'
of the relation created. A

user may only destroy a relation he owns.

INGRES makes available to the DBA the following com

mand to specify access permission for shared relations:

PERMIT relname TO object FOR command

(target list; idlist) WHERE qualification

The fields of this command have the following mean

ing:

relname: specifies the name of the relation to be pro

tected

object: specifies the object to be controlled. This may

be a user, a teletype, or the keyword ALL,

which will cause the restriction to apply to

all users.

command: specifies which type of access is to be

allowed. The types of access allowed are

www.manaraa.com

65

RETRIEVE, APPEND, DESTROY, REPLACE, DELETE,

COPY and PRINT, or the keyword ALL.

target list: a list of domains of the form tuple-

variable, domain which may be accessed.

idlist: a list of domains of the form tuple-

variable, domain which can be accessed but not

updated. These domains may appear in a qualifi

cation clause of an update, but may not appear

in the target list. This field is optional.

However, only one tuple variable can be

presented in the target list and idlist.

qualification: any valid QUEL qualification containing

any number of tuple-variables. It specifies the

subset of the relation which may be accessed by

an interaction of the type specified by 'com

mand'

. A pound symbol (#) may appear in the

qualification to specify the UNIX logon name of

the user currently invoking INGRES.

The database administrator can enter an arbitrary

number of protection statements governing access to his

relations. Each protection statement is given a unique ID

and stored in the PROTECTION relation. This relation has

domains of relation name, command, object,
target-

list,

idlist, qualification, protect ionid. This relation is

www.manaraa.com

66

normally compressed and hashed on the first two domains.

Removal of protection statements is accomplished by the

DBA using the utility command

DENY (protection-id).

Relations owned by other users are guaranteed private

by INGRES. Therefore only the DBA is permitted the use of

the PERMIT command. Since system catalogs contain data

about the database, their integrity must be carefully

guarded. Consequently no user (including the DBA) is

allowed to update system catalogs using QUEL. However,

RETRIEVE permission to a portion of a catalog may be

granted to others by the DBA.

In summary the DBA has the following powers not

available to ordinary users:

(1) the ability to create shared relations and to specify

access control for them.

(2) the ability to destroy any relation in his database

(except the system catalogs).

This system allows
'one-level'

sharing in that only

the DBA has the above powers and he cannot delegate then

to others. The designers' arguments to support this cen

tralized control were:

www.manaraa.com

67

(1) Additional generality would have created considerable

problems, such as making revocation of privileges

nontrivial.

(2) It seems appropriate to entrust to the DBA the duty

(and power) to resolve the policy decision which must

be made when space is exhausted and some relations

must be destroyed (or archived). This policy decision

becomes much harder (or impossible) if a database is

not in control of one user.

(3) Someone must be entrusted with the policy decision

concerning which relations to physically store and

which to define as 'views'. This "database
design"

problem is best resolved by a centralized DBA.

INGRES requests are analyzed and validated at execu

tion time, one statement at a time. The implementation of

access control has two major facets. The first is the

representation of information in the PROTECTION relation

(see figure 21). If data were stored in a text string, the

string would have to be completely parsed for each

interaction to which it applies. The overhead of this

strategy is considered unreasonable.

www.manaraa.com

63

User- QUEL

query

Convert to

Internal

Form

Validate

and

Mod i fv

Shared

Relat ions

DBA

i
Protect ion

Interact ion

\y

Convert to

Internal

Form

PROTECTION

Figure 21

INGRES access control

Consequently a protection statement will be parsed

when entered and stored as a tree structure in the PROTEC

TION relation. When an interaction is to be modified, the

qualification trees of the protection interaction need

only be attached to the qualification tree of the user's

interaction. The ID and target lists are stored as a list

of domain numbers which are then internal representation

for domain names.

www.manaraa.com

69

The second facet of the implementation is the

enforcing of the protection interaction. This is done by

the following algorithm:

(1) Find all attributes in the target list on the unmodi

fied qualification statement of the interaction. Call

this set S.

(2) Find all access control interactions whose command

type and object match those of the user's interaction

and with a target list containing all attributes in

S. Denote this by T. If there is not such set T, the

query is aborted due to lack of permission.

(3) Ignore any access rules in T whose target list con

tains the target lists of other rules in T. That is,

find the smallest target lists that cover the

request. Call the qualification of the remaining

rules P1, . . . , Ph .

(4) Replace the request qualification Qr, by

Q^ AND (Q} OR Q^ OR ... OR Q)

(5) Execute the modified interaction normally.

What this algorithm means is that all rules relevant

to the request are first located. It is then assumed that

rules are well nested, that is, Rule A is more restrictive

www.manaraa.com

70

than Rule B if Rule B authorizes access to a subset of

attributes in Rule A. Only the most restrictive rules are

retrieved for the query modification.

The following example illustrates the algorithm:

Ex. Each manager can read salaries of employees

who work for him

Protection interaction:

RANGE OF E IS EMPLOYEE

PERMIT ALL TO EMPLOYEE FOR RETRIEVE

(E. SALARY; E. NAME)

WHERE E. MANAGER - #

An interaction by Jones:

RETRIEVE (E. SALARY)

WHERE E. NAME - "SMITH"

would by modified to:

RETRIEVE (E. SALARY)

WHERE E. NAME
"SMITH"

AND E. MANAGER =
"JONES"

In INGRES the objects protected by the access control

rules are always real relations. This is a different

approach from other systems which provide access control

to virtual relations, or views. The following example

illustrates the rationale behind this design decision:

Consider the following two views:

RANGE OF E IS EMPLOYEE

DEFINE RESTRICTION-1 (E. NAME, E. SALARY, E. AGE)

WHERE E. DEPT =
"toy"

DEFINE RESTRICTION-2 (E. NAME, E. DEPT, E. SALARY)

WHERE E. AGE (50

and the following two access control statements:

RANGE OF E IS EMPLOYEE

www.manaraa.com

71

PERMIT ALL TO EMPLOYEE FOR RETRIEVE

(E. NAME, E. SALARY, E. AGE)

WHERE E. DEPT = "toy"

PERMIT ALL TO EMPLOYEE FOR RETRIEVE

(E. NAME, E. SALARY, E. DEPT)

WHERE E. AGE (50

Access control could be based on views, where a given

user may be authorized to use views RESTRICTION-1 and

RESTRICTION-2. To find the salary of Smith he might intei

rogate RESTRICTION-1 as follow:

RANGE OF R IS RESTRICTION-1

RETRIEVE (R. SALARY)

WHERE R. NAME =
"Smith"

Failing to find Smith in RESTRICTION-1, he would have

then to interrogate RESTRICTION-2. After two queries he

would be returned the appropriate salary if Smith was

under 50 or in the toy department. Under the INGRES scheme

the user can issue:

RANGE OF E IS EMPLOYEE

RETRIEVE (E. SALARY)

WHERE E. NAME
"Smith"

which will be modified by the access control algorithm to

RANGE OF E IS EMPLOYEE

RETRIEVE (E. SALARY)

WHERE E. NAME -
"Smith"

AND

(E. AGE (50 or E. DEPT "toy")

www.manaraa.com

72

In this system the user need not manually sequence

through his views to obtain such data if permitted. Note

clearly that the portion of EMPLOYEE to which the user has

access (the union of RESTRICTION-1 and RESTRICTION-2) is

not a relation and hence cannot be defined as a single

view.

To summarize, access control restrictions are handled

automatically by the INGRES algorithm. In a view oriented

scheme, a user must sequence through his views to obtain

allowed information.

4. 2. DB2

DB2 (Data Base 2) is a subsystem of IBM's MVS operat

ing system. It is a relational database management system

(DBMS) for that operating system. Any given DB2 applica

tion, that is, any application program that accesses one

or more DB2 databases, will execute under the control of

exactly one of the three subsystems IMS, CICS, or TSO.

The user interface to DB2 is the SQL language (Struc

tured Query Language). SQL is a relational nonprocedural

data sublanguage with ideas both from the relational cal

culus and the relational algebra. However, it does not

make use of calculus quantifiers or other mathematical

concepts, rather it is a structured query language with

English keywords. SQL can be used in both interactive and

www.manaraa.com

73

embedded environments, and it provides both data defini

tion and data manipulation functions. The major data

definition functions are:

CREATE TABLE DROP TABLE

CREATE VIEW DROP VIEW

CREATE INDEX DROP INDEX

The data manipulation functions are:

SELECT UPDATE DELETE INSERT

For example, a SELECT statement has the form:

SELECT column-list

FROM relname

WHERE condition

where:

column-list: specifies the columns of the target result

which is always a table (null, one row, or

many rows). An asterisk (*) could be used to

retrieve all columns of the relation.

relname: specifies the table(s) from which the target

result is to be obtained.

condition: specifies the logical condition(s) or predi

cates on which the result is to be obtained.

www.manaraa.com

74

Consider the following relations:

EMPLOYEE (NAME, DEPT, SALARY, MANAGER, AGE)

DEPT (DEPT, FLOOR#)

A query to retrieve the names and salaries of all employ

ees whose manager is Jones would be:

SELECT NAME, SALARY

FROM EMPLOYEE

WHERE MANAGER = "JONES";

There are two more or less independent features in

the system that are involved in the provision of security

in DB2: (1) the view mechanism, which can be used to hide

sensitive data from unauthorized users, and (2) the

authorization subsystem, which allows users having

specific privileges selectively and dynamically to grant

those privileges to other users, and subsequently revoke

them if desired.

Once the policy decisions, as to which specific

privileges should be granted to which specific users are

made, DB2 enforces them in the following way:

(a) The results of those decisions are made known to the

system by means of the GRANT and REVOKE statements,

and are remembered by the system by saving them in

the catalog.

www.manaraa.com

75

(b) It provides a means of checking a given access

request against the applicable authorization con

straints (here 'access request'
refers to the combi

nation of requested operation plus target object plus

requesting user). Most of the checking is done by

BIND at the time the original request is bound.

(c) Provides a means to recognize the source of the

request. This is done by the authorization ID

assigned to each user.

In order to simplify the operation of granting many

different privileges to different users, DB2 provides a

hierarchy of authorization levels that can be assigned to

system administrators, database administrators, applica

tion programmers, operators and others. These are called

administrative authorities. Thus, in DB2 there are two

kinds of authorities: individual authorities and adminis

trative authorities. Those who are granted administrative

authorities possess the individual authorities that encom

pass them, but they also possess other authorities that

cannot be granted individually.

A brief description of each administrative authority

fol lows:

(a) Super SYSADM (Super System Administrator) - the user

designated as super system administrator during the

www.manaraa.com

76

installation process is at the head of the authoriza

tion structure in DB2. The Super SYSADM has total

control over all DB2 resources. No other user can

revoke SYSADM authority from the Super SYSADM.

(b) SYSADM (System Administrator) - this is the highest

level of administrative authority. Persons having

SYSADM authority have total control over all DB2

resources (except certain critical subsystem table

spaces and indexes that are only recoverable by the

Super SYSADM) . They can grant and revoke any of the

other levels of authority and can grant any particu

lar individual authority to any user and revoke any

authority granted by any other user.

(c) DBADM (Data Base Administrator) -

users with this

administrative authority have total control over a

particular DB2 database and have capabilities on

objects within the database. A user can have DBADM

authority over more than one database.

(d) DBCTRL (Data Base Control) -

users having DBCTRL have

all the capabilities of the DBADM except that they

cannot automatically access the data in the database.

(e) DBMAINT (Data Base Maintenance) -

users with DBMAINT

authority have the read

only privileges of DBCTRL.

This level of authorization is meant for personnel

www.manaraa.com

77

who perform such tasks as running utilities to make

image copies and obtain statistics.

(f) SYSOPR (System Operator) - This level of administra

tive authority is meant for system operators who

issue DB2 operator commands, but have no access to

databases.

These authority levels allow system administrators

to separate the task of database administration on a

database-by-database level. Different groups can adminis

ter their own data without affecting any other database.

The distribution of authority is a policy decision. It's

up to the administrators to use the capability to distri

bute authorization that DB2 offers, or to have it central

ized.

Users of DB2 that do not hold any of the special

administrative authorities can create an object if they

have been granted the authority to create that type of

object. Regardless of how users gain the authority to

create objects (tables, table spaces, indexes, etc.), they

have full access to the objects they create, even if they

do not have any of the administrative authorities.

As already mentioned, all users are identified by

authorization IDs. A single user can have more than one

authorization ID and, conversely, several users can share

www.manaraa.com

78

one authorization ID. To use any DB2 capability a user

must be granted that privilege, and the privilege is

granted to the user's authorization ID. A user's authori

zation ID entitles the user to ownership of the data in

the objects he creates plus ownership of certain

privileges. In addition, any privilege on the object can

be granted to another user. Also, at the creator's option,

privileges can be granted such that the grantee may in

turn grant privileges to other users.

Access to DB2 resources is controlled by means of the

GRANT and REVOKE statements. The GRANT statement enables

you to give users certain privileges. The REVOKE statement

enables you to take these privileges away. Only a

privilege that has been specifically granted can be

revoked. Instead of granting privileges to authorization

IDs, as indicated above, you can also grant privileges to

PUBLIC, which means that all users are granted those

privileges. When a privilege is revoked from PUBLIC,

Authoriation IDs that were specifically granted that

privilege will still retain that privilege.

The general form of GRANT is:

GRANT some-privilege ON some-resource TO some-auth-ID

CWITH GRANT 0PTI0N3

www.manaraa.com

79

The "WITH GRANT OPTION", if indicated, enables the

grantee to further grant this privilege to other users.

There are five forms of the SQL GRANT statement, and five

forms of the corresponding REVOKE statements. The five

forms that enable you to grant and and revoke privileges,

and some examples of each one, follow:

(1) GRANT or REVOKE TABLE PRIVILEGES
- Retrieve data from a table or view (SELECT)

- Insert new rows in a table or view (INSERT)

- Delete rows from a table or view (DELETE)

- Update columns of a table or view (UPDATE)

- Create indexes for columns of a table (INDEX)

- Alter a table (ALTER)

(2) GRANT or REVOKE PLAN PRIVILEGES

- Use a BIND, REBIND, or FREE subcommand

Run programs associated with a specified

application plan (EXECUTE)

(3) GRANT or REVOKE SYSTEM PRIVILEGES

- Create databases and have DBADM authorization

over the database created (CREATEDBA)

(4) GRANT or REVOKE DATABASE PRIVILEGES

-

DBADM, DBCTRL and DBMAINT administrative

authorit ies

- Operator commands to start, stop, and

display a database (STARTDB, STOPDB,
DISPLAYDB)

- Create a table (CREATETAB)

- Drop a database (DROP)

- Use DB2 utilities to:

- load table spaces and indexes (LOAD)

- recover table spaces and indexes (RECOVERDB)

(5) GRANT or REVOKE USER PRIVILEGES

- Authority to use a buffer pool

- Authority to use a table space

There are certain actions a user can perform (such as

dropping a table) for which no explicit authority can be

www.manaraa.com

80

granted. The appropriate authorization IDs possess these

privileges implicitly. A table can only be dropped by its

creator, someone who has SYSADM authority, or by someone

who has DBADM authority over the database that contains

the table.

In addition to the authority hierarchy described, DB2

provides another feature to control access to data: the

view mechanism. Anyone who creates a table can create a

view of it. Also, a user can create views based on tables

created by other users, provided he has SELECT privileges

over those tables. The creator of a view is granted only

the capabilities on the view that he or she holds on the

table or tables on which it is based.

When a view is created DB2 inserts information in the

authorization table of the catalog, for each table used by

the view, as to which privileges the creator has on the

view. When a user's authorization to use a table changes,

the system checks the authorization table to see whether

the user created a view based on that table. If a

privilege is lost from the table, it will also be lost

from the view. If as a result of this update, the user no

longer has SELECT privilege on the view, the system

deletes the view.

www.manaraa.com

81

When a view is dropped, it does not affect the table

(or tables) on which the view is based. However, when a

view or table is dropped, the system will also automati

cally drop all views that are dependent on the views or

tables being dropped.

DB2'
s catalog contains a series of system tables

which maintain information about objects. Every time an

object is created, DB2 makes appropriate entries in the

catalog; a description of the object is entered along with

cross
reference information showing how the object relates

to other objects. The tables of interest to us are the

ones that keep information about authorization. Some of

these are:

SYSDBAUTH - identifies the privileges held by users

over databases.

SYSTABAUTH - records the privileges held by users on

tables and views.

SYSCOLAUTH
- records the UPDATE privileges held by users

on individual columns in a table or view.

Entries are made in the table only when a

GRANT statement specifies a column list fol

lowing UPDATE authority.

www.manaraa.com

82

SYSPLANAUTH -

records the privileges held by users on

application plans.

SYSUSERAUTH -

records the system privileges held by

users.

In general, the relation SYSTABAUTH consists of

USERID, TNAME, TYPE, UPDATE GRANTOP, PRIV

which have the following meaning:

USERID - is the user who is authorized to perform the

action recorded in PRIV on the relation TNAME.

TNAME - is the name of the table (relation) to which

USERID has been granted access to.

TYPE - indicates whether TNAME refers to a base rela

tion (TYPE = R) or to a view (TYPE = V).

UPDATE - indicates whether the user USERID may perform

this action on all columns of the relation (UPDATE

= ALL), on some columns (UPDATE = SOME), or on

none (UPDATE = NONE) .

GRANTOP - indicates whether the privileges are grantable

or not .

PRIV
- is a sequence of columns, one for each

privilege, which indicates (Y or N) whether the

www.manaraa.com

83

corresponding privilege may be exercise or not. In

addition, a time stamp is kept in order to be able

to control revocation of privileges.

For each (user, table) pair there are zero, one or

two entries in SYSTABAUTH. There are zero entries if there

are no privileges, one if the privileges are either with

or without grant-option, and two if there are some

privileges with and some without grant-option, in which

case there is one tuple for all privileges with
grant-

option and one tuple for all without. The entry in SYS-

COLAUTH is needed only if UPDATE = SOME, meaning that

there are some columns on which the user USERID may exer

cise the privileges and there are others in which he may

not. SYSCOLAUTH is used to record precisely on which

columns that may be done: for each updatable column a

tuple of the form

(user, table, column, grantor, grantopt)

is in SYSCOLAUTH.

Every time a GRANT command is issued, the system ver

ifies whether the grant is authorized. If it is, either a

new tuple is inserted in SYSTABAUTH or an old one is modi

fied; the action on SYSCOLAUTH occurs according to the

UPDATE field of the corresponding SYSTABAUTH tuple.

www.manaraa.com

84

4. 3. System/38

The IBM System/38 is a general-purpose data process

ing system designed to provide a high-level machine intei

face. It supports advanced database and interactive work

station applications as well as traditional batch applica

tions. The system's interface has an object-oriented

architecture. Objects are the means through which informa

tion is stored and processed on the system. An object is

defined as a named entity that is described by its set of

attributes; the attributes define a set of functions or

operations that can be performed on the object.

There are three basic user interfaces on System/38:

the Control Language, RPG III, and data description

specifications. Control Language (CL) allows for the

establishment and control of the processing environment

and provides an interface to many system dependent func

tions. RPG III allows the user to write a program such

that objects like database files, work station files, and

external data areas are not defined in the program. I/O

operations are specified in the program, but the object

structures (down to the field level) are defined via a

separate interface. This separate interface is the 'data

description specification'. It serves only as a descrip

tive interface since the actual object creation can only

be affected via a CL command.

www.manaraa.com

85

One of the main characteristics of System/38 is that

it is object oriented. A description of the objects that

could be defined in the system follows. Then we'll analyze

how these objects are related to enforce access control

rules.

Objects are devided into two classes of objects: sys

tem objects and program objects.

(1) System objects

(a) Data Space: serves as the basic unit of storage for

a user's data. It consists of a collection of

entries, each of which may contain a given number

of similarly formated data fields.

(b) Cursor: provides access to the entries residing

within a data space. A cursor is the user's only

interface to these entries.

(c) Context: is an object that contains addressability

by name, type, and subtype to other system objects.

(d) Access group: enables a user to specify (as a

group) those system objects that are used together.

(e) Data Space Index: object that is used to provide a

logical ordering of the entries in a data space.

www.manaraa.com

86

(f) Program: object that forms the basic executable

unit of the machine.

(g) User Profile: object that identifies a valid user

to the machine. A user profile also identifies the

user's rights to use the system objects, machine

resources, privileged instructions, special machine

instructions, and certain machine attributes.

Each system object must be explicitly created. There

are specific Create instructions (for example, Create Cur

sor and Create Context) for each type of system object. A

system pointer provides addressability to a system object.

That is, in order to reference a system object for any

operation, a system pointer must be specified as an

operand of the instruction or implied as a field in a tem

plate.

(2) Program objects

(a) Data Object: object that provides operational and

possibly
representational characteristics to byte

strings in spaces for use as instruction opera

tions. There are two classes of data objects:

- Scalar data object: provides support for opera

tions on values in space.

www.manaraa.com

87

- Pointer Data Object: provides addressability to

both program and system objects.

(b) Constant Data Object: defines a scalar data view

that remains the same throughout the existence of a

program.

(c) Entry Point: references an instruction as a target

of the program invocation function.

A program object is created by the execution of the

Create Program instruction. This instruction causes an

object to be defined in the Object Definition Table (ODT) .

The entry in the Object Definition table that describes a

program object is called a 'view'. A view defines the

type, attributes, functional location, and, possibly, a

permanent value or an initial value of the object.

Once an object is created, its internal stored format

is not apparent to the user. The status and values of the

object may be retrieved or changed by using interface

instructions, but the internal format of the object cannot

be d i rect 1 y v i ewed or mod i f i ed .

Although the database supports security only on the

object level, differences in the authorization required to

use a Create Cursor instruction allow the implementation

of field level security through the use of a subset of the

www.manaraa.com

88

fields. When a cursor is created to use a data space, the

user must provide another description called the 'mapping

template'. The mapping template describes how a user wants

the entries to appear to the user program. The user may

provide two mapping templates when the transformation of

data is different for retrieval than for insert or update.

Cursors can be created over multiple data spaces.

Following is a discussion of the kinds of access or

authorities a user can possess over the objects described.

(1) Object Authorization - Instructions that involve sys

tem objects usually require certain authorities to

those objects. During the execution of a program,

instructions may require one or more of the following

specific object authorities, which can be granted to

users in any combination:

(a) Public Authority
-

can be used to control access by

all users to the objects in the system. Three lev

els are available: ALL, eliminates security checks,

all users can access the object; NO, only the

object owner or other users whose profile contains

a specific authority for that object can access it;

NORMAL, allows all users to perform normal opera

tions associated with the object, for example, nor

mal operation for a program would be execution but

www.manaraa.com

89

not deleting or modifying.

(b) Object Management -

required to control the acces

sibility and availability of system objects, for

example: modify addressability, grant /retract

authority, create cursor, modify attributes.

(c) Data-related Authorities -

control reading, writ

ing, and general usage of system objects, for exam

ple: retrieve, insert, delete, update, authorized

pointer, execute-only (for programs).

(2) Special authorizations -

allow use of certain impli

cit authorities (that are not necessarily associated

with one specific instruction or object), function

authorities, and machine attribute modification

authority.

(a) All-object authority
-

provides authority to use

any object in the machine without public or private

object authorization being granted to the object.

(b) Load - allows the user to copy an object from a

load/dump media onto the machine.

(c) Dump
- allows the user to copy an object from the

machine to a load /dump media.

www.manaraa.com

90

(3) Resource authorization -

controls the amount of sys

tem resources that the user can utilize.

(4) Privileged Instructions -

used to restrict creation

or attribute modification of certain types of system

objects for example: Create User Profile, Modify User

Profile, Initiate Process, Terminate Machine Process

ing.

(5) Owned Objects -

certain authorities are implied to

the owner of a system object.

A prerequisite for authority verification is the

identification of the user. This is satisfied through the

use of an object called the User Profile, which identifies

the user and the user's authority. A user profile has a

name, type, and subtype that identifies a user to the

machine in one of the following manners:

All users of the system can be identified to the sys

tem by the same user profile.

. A group of users can share a single user profile.

Each user of the system can have a unique user pro

file.

Two levels of users can be defined:

www.manaraa.com

91

(1) System Security Officer - the system security off

icers have ultimate control of the use of the system.

They can create a user profile and grant or revoke

authority of that user to access any object or system

funct ion.

(2) User -

whenever a users create objects, they become

the owners of those objects. They have complete con

trol over the objects. They can perform all of the

functions of the officer in granting or revoking

authority over the objects they own.

Each process in the machine executes under control of

a user profile. When the machine executes an instruction,

references an object, or requests a resource, it is done

in the name of the user. Therefore, the user profile asso

ciated with a process is checked for the authority to use

that item. When a process creates a permanent system

object, the user profile associated with the process is

assigned ownership of and all rights to that object. Tem

porary objects are not owned by any user profile, instead,

all object authorities are granted to the public.

In addition to the authority provided by the process

user profile, a process can
'adopt'

other user profiles

and, therefore, use any additional authority available to

these user profiles. When a program is created, the crea-

www.manaraa.com

92

tor can specify that the program is to have the adopted

user profile attribute. He can also specify that it is to

have the 'propagate adopted user profile' attribute, these

causes the adopted user profile to be available to other

programs called by the program with these attributes.

The symbolic address of an object used for address

resolution may be qualified by a minimum authority

requirement. If the authorities in the user profile does

not agree with this minimum requirement, no access is per

mitted, and the system continues the search for other

objects with the proper type, subtype, name, and authoi

ity.

The right to use a system object is monitored by the

machine. Object authorization is implemented in microcode

below the lowest user-available interface. The objects are

stored in auxiliary storage, but there is no interface

available to the user for reading from, or writing to,

this medium. All operations are made through well-defined,

object-sensitive, microcode instruction interfaces which

enforce object authorization.

In order to reference a system object for any opera

tion, a system pointer must be specified as an operand of

the instruction or implied as a field in a template. When

the pointer is first referenced the machine searches the

www.manaraa.com

93

entries of one or more contexts (which contain object

names and locations) in order to locate the specified

name. Once found, the resulting object location is stored

in the pointer, thereby, eliminating subsequent searches

(see figure 22).

System/38 instruction

OP code

Operand

Unresolved

system pointer ^

Context

search

Synchroni zat ion

\

Resolved

system pointer

Access by

other processes

User Profiles

Narne-

- location

'Object
i Author ity

location/

|

y
Authority

l

\

Figure 22

The object access path

For efficiency, the authority available to a user can

be stored in the system pointer to the object. If the

required
authorization is contained in the pointer no

further authorization checking is required. The user con

trols system pointer authority. The authority is not

stored in the pointer unless the process has 'authorized

pointer
object' authorization to that object. Storing

www.manaraa.com

94

authority in the pointer has performance benefits, but it

also has some functional disavantages. A system pointer

with the authority attribute can be copied outside the

process and therby cause implicit granting of authority to

another process that may use the pointer or a copy of the

pointer- Also, the authorization pointer can be saved

indefinitely, this causes the Retract Authority instruc

tion to be ineffective for such cases.

Pointers are protected against modification. A

pointer is an object that is used only for addressing and

does not permit examination or manipulation of the implied

physical address. Direct modification of a pointer via a

'computational' instruction results in the pointer becom

ing invalid and no longer usable for addressing purposes.

4. 4. Comparison of systems

Both INGRES and DB2 protection systems allow selec

tive control of access to logical database subsets. Both

schemes allow the designer of protection specifications to

describe the logical database subset in high level,

nonprocedural terms. That is, tools are provided to allow

protection specifications to be written without requiring

the specifier to write programs in a general purpose pro

gramming language. INGRES and DB2 use QUEL and SQL predi

cate expression capabilities, respectively, to facilitate

www.manaraa.com

this.

In INGRES, the qualification clause of a protection

statement is used to identify a logical subset of the

relation. QUEL allows selective access to column subsets

via the specification of accessible columns. Access can be

controlled in terms of the columns that are allowed to

appear in the target list of an interaction as well as

those that are allowed to appear in the qualification part

of the interaction. QUEL protection statements are used to

control access to information in a single relation only,

although the subset of a relation that is accessible can

be defined in terms of data in other relations.

In DB2, access control specifications for specific

columns and rows of a table are described in terms of

'views', rather than in terms of base relation subsets.

Each view has an associated definition that specifies how

the view is constructed from the underlying relation(s).

Row subsets of relations (and views) can, thus be speci

fied. All columns of a view are readable to a user who has

the appropriate privilege (read access to the view).

A subset of the columns of a view can be specified as

those the user can update. In addition to the ability to

define a view that is a row and/or column subset of a

relation, one can define a view that summarizes the infor-

www.manaraa.com

96

mat ion in a relation. For example, a statistical view of

the EMPLOYEE relation can be defined that has the sum of

employee salaries by department (common value of Depart

ment). It is also possible to define a view that combines

the information in two individual relations, e.g., the

join of EMPLOYEE and DEPT on common Department.

Unlike INGRES,
DB2'

s access privileges can grant

access to information derived from base relations without

necessarily granting access to the base relations them

selves. In both INGRES and DB2, an interaction (query or

update request) that involves more than one relation is

constrained by the intersection of the relevant privileges

on those relations. In INGRES, all relations involved in

the interaction are base relations, whereas in DB2 one or

more of them can be a view.

In supporting views, DB2 in effect handles many of

the types of problems that can also be handled by limiting

the operations a user can invoke. However, neither DB2,

nor INGRES explicitly provide for control on the types of

operations (transactions) a given user is allowed to per

form. No consideration is given to the need to control

what a user can do with data after it is released to him.

In System/38 indirect access control is achieved also

by the definition of logical files (views). Once these

www.manaraa.com

97

files are created users are given access rights to them.

These logical files are defined in a similar way as DB2

views, in that they can be formed of a subset of columns

or rows. But, like INGRES, they are based only on physical

files. No logical files can be defined over other logical

files.

DB2 and System/38 approach to controlling access to

aggregate quantities (e.g., the average employee salary)

is to allow a user access to a view (or logical file)

created for each relevant aggregate (e. g. , one for the

average employee salary, one for the salary total, etc.).

INGRES handles access to aggregates in a more restrictive

way: if the user does not have access to the data under

lying the aggregate (e.g., access to all employee

salaries, if he wants to ask for the average employee

salary), then either:

(1) he can be allowed to examine aggregate information

only if the aggregate is taken over a complete rela

tion, or

(2) the aggregate is modified so that it ranges over a

subset of the underlying relation to which the user

has access.

The database administrator decides for each aggregate

type which of the two above alternatives is to apply.

www.manaraa.com

98

DB2, INGRES, and System/38 allow access privileges to

be dynamically issued and revoked. For the revocation of

access privileges to be immediate, each access to the data

must be checked for authority. In DB2, revocation does not

actually have an effect on a user until after the transac

tion he is currently executing has completed. This is done

because of the desire to make the transaction the basic

unit of consistency, concurrency, recovery, and authoriza

tion in DB2, and because it is desirable to minimize the

number of authority checks the protection system must per

form.

Because it is not transaction oriented, INGRES

revokes access from a user after the current interaction

is completed.

In System/38 some problems may arise if the authori

zation information is stored in the system pointer. Since

this pointer could be indefinitely saved, the authoriza

tion could be in the system even if it has been removed

from the user profile.

The ability to dynamically issue and change protec

tion specifications in INGRES is centralized: the database

administrator creates and issues all protection statements

on shared relations. The ability to control protection

specifications in DB2 is distributed: any user can create

www.manaraa.com

99

a relation and grant access privileges on it. A user can

furthermore pass on the ability to grant a privilege to

another user (the "grant option", which is related to the

"copy flag").

In the INGRES scheme the database administrator can

be a potential bottleneck if protection specifications are

rather highly dynamic. The database administrator is given

an excessive amount of power, which is not consistent with

the concept of separation of privileges (i.e. distributing

power). The centralized approach may, however, be

appropriate in a given application environment: the data

base administrator can balance conflicting requirements.

DB2 avoids this problem, but at the expense of added over

head (e.g., in revocation). The INGRES centralized

approach has one additional advantage: it prevents the

user from copying data to which he has access and subse

quently granting access to it to others (who presumably

should not be allowed such access).

System/38 provides also distributed authorization in

that users can grant privileges to other users over

objects they own. But there is a central security officer

or DBA who controls all objects in the system and who has

ultimately authorization over them.

www.manaraa.com

100

The DB2 and INGRES protection schemes are based on

the user oriented data selection and modification

languages SQL and QUEL, respectively. The advantages and

disadvantages of these two languages are to some extent

inherited by the corresponding protection system. Both

systems have relatively simple protection mechanisms,

which is a plus with regard to the effectiveness of the

user interface.

Both DB2 and INGRES protection systems are basically

access control list systems, because they maintain lists

of which users have which access privileges. In DB2, the

user is responsible for choosing the correct view for his

interaction. He can obtain different access rights if he

phrases his interaction in terms of one view than he would

obtain if he phrases it (equivalent ly) in terms of

another. By contrast INGRES automatically determines

which access privileges are relevant to a given interac

tion; the user has no choice to make. The apparent trade

off is between the flexibility of the DB2 approach and the

ability of INGRES to automatically determine all relevant

access rights for a given interaction.

System/38 takes a different approach, it utilizes the

capability list technique. On each user profile there is a

list of the objects the user is allowed to access together

with the corresponding authorities he has to each object.

www.manaraa.com

101

In the INGRES scheme, the need for a larger number of

protection statements with a large number of interactions

is a problem. For example, it is required that the protec

tion statements for a user be properly "nested": the more

columns named in the protection statement (present in the

target list and qualification column list), the more res

trictive is the allowed access. In INGRES, it is necessary

to repeat the complete specification of an access right

for each user to whom it is to be given, whereas in DB2

each distinct view is defined only once.

Due to use of query modification, an INGRES user can

be supplied with an answer to a question different from

the one he asked; the user should normally be notified of

this difference. For example, a request for the average

employee salary may be modified to yield the average

salary of employees in the toy department only. DB2 takes

the approach of reporting all protection violations to the

user, denying him the requested access.

In System/38 logical files are defined only once, but

since it uses the capability list, authorization specifi

cations for each object is entered on each user profile.

One way to minimize this repetition is by defining users

in groups and assigning a user profile for the group. All

members of the group have the same access privileges to

the specified objects.

www.manaraa.com

102

DB2, INGRES, and System/38 have fail safe protection

defaults, in that the default is to deny access if the

required privileges are not explicitly present.

INGRES, DB2, and System/38 rely on the operating sys

tem on which they are built for user authentication, and

reliability of operation. The operating system is also

relied upon for primary memory protection (e.g., clearing

storage residues), controlling the hardware for reliabil

ity, etc.

5. Conclusions

5. 1. Concluding remarks

This paper has presented the techniques that has been

used to model protection requirements, in particular,

access control information in a database management sys

tem. These tools aid the designer to express the relation

ship between the components of a security system, e.g.,

users (subjects), objects, and the set of rules that

governs who can access which data. These models should

help him find the best way to enforce the security

requirements at the time of implementation.

The access matrix has shown to be a good means to

view all objects, subjects , and the rules that relate

them. But precisely because it is a view of every
com-

www.manaraa.com

103

ponent, it can be too sparse to implement. Here is where

two variations of the matrix become useful. The authoriza

tion list and the capability list systems have shown to be

more suitable and realistic to implement. In both cases

protection data is maintained but the distinction is

whether it is maintained by user (capability list) or in

relation to objects (authorization list). In capability

systems, each subject must keep a collection of keys for

the objects of interest, keys issued by the owners of

these objects with possible granting privileges. These

systems require each subject to present the correct key

whenever a privilege is requested.

In access- list systems a list of authorized users is

kept with each object. The security system checks this

list whenever access is requested and oversees that all

access conditions are met. The subject only needs to pro

vide identification/authentication information which will

lead to the initialization of his profile. For this usei

convenience reason, such systems could be appealing for

database management systems. The authorization list sys

tems permit the revocation of privileges without consulta

tion with the user who is losing the privilege. They per

mit an auditor to determine the range of access without

having the access himself.

www.manaraa.com

104

In both authorization list and capability list

schemes, what is controlled is access to the container of

the data rather than access to the data itself. Access

control mechanisms could not be based only on the type of

access (e.g., read, write, delete). More complex controls

are required in a general-purpose DBMS to ensure:

(1) containei dependent security (e.g. "user U cannot

access the domain SALARY")

(2) value-dependent security (e.g. "user U can retrieve

the domain SALARY if, and only if, salary value is

less than $2000")

(3) context-dependent security (e.g. "user U cannot

retrieve the domain SALARY together with the domain

NAME")

These controls have to be stated in a "logical form"

and cannot be provided by a straightforward capability or

authorization list mechanism. Two basic mechanisms have

been defined to implement access control at the external

level of a general-purpose DBMS: views and query modifica

tion. The view mechanism offers the user the sensitive

data he has the right to manipulate; other data are hid

den. Such a view is built (dynamically or statically) from

the global schema and the security constraints.

www.manaraa.com

105

In the query modification mechanism, the user request

is considered a
"virtual"

one. The actual interaction with

the database takes place after appending (logical AND) the

concerned security constraints to the user request.

Whatever approach is taken to enforce management

security policies, the final protection system should help

certain characteristics, or should have attained a series

of goals. We'll summarize the goals by which database pro

tection systems should be evaluated.

(1) The granularity of the protection specifications must

be variable; it must be possible to selectively con

trol access to arbitrary logical subsets of a data

base. In a database management system there are no

fixed boundaries between protected objects. In a

given database application environment, it may be

necessary to selectively permit access to only cer

tain records in a file, or allow a user to examine or

update a subset of the fields of a record. Furthet

more, a protection specification for a database can

refer to information anywhere in the database (e.g.,

corre 1at i ng informat ion in severa 1 f i 1es) .

(2) The protection specifications must facilitate grant

ing access to derived information. It must be possi

ble to control access to data that is calculated from

www.manaraa.com

106

information in the database, such as statistical sum

maries or logical reorganization of the information.

(3) It should be possible to control the particular types

of domain specific operations (operation specific to

a particular application domain) that can be pei

formed on a database. It is not always sufficient to

be able to specify what data a user can access, but

rather specifically what he is allowed to do with it.

It is sometimes useful to be able to limit a user to

certain types of database operations.

(4) Dynamic control of the protection specifications is

necessary, as the needs of an application environment

are not constant. It must be possible to selectively

grant and revoke access privileges, as well as to

immediately revoke an access privilege, if this

becomes necessary.

(5) The distribution of authority to control protection

specifications must provide for flexibility, e.g., by

allowing users to grant access to information they

"own". It is desirable to minimize the amount of

trust that must be given any individual. However,

since a shared database is involved, conflicting

requirements must somehow be balanced.

www.manaraa.com

107

(6) An effective user interface to the protection system

must be provided. The interface must deal with

administrators who issue the protection specifica

tions, as well as with users who encounter access

restrictions (and potentially violate them). The cen

tral problem is that of issuing and maintaining pro

tection specifications. The goal is a scheme that is

easy to use and easy to learn, although these

requirements often conflict.

(7) The protection scheme must be flexible and generally

applicable, i.e., special izable to a variety of

application environments. The scheme must satisfac

torily support complex protection specifications, but

must also not be cumbersome when careful control is

not warranted.

(8) The protection scheme and its underlying mechanism

must be reliable. Users need to have confidence in

it. It must have fail safe defaults, such as a

default to deny access. The protection scheme and a

set of protection specifications based on it must be

auditable. The design of the mechanism should be

open, it the sense that its success does not depend

on user ignorance.

www.manaraa.com

108

(9) The protection mechanism must be cost effective. The

run time costs are particularly crucial for database

management systems, as repetitive operations are com

monplace. An inefficient protection mechanism can

tremendously degrade the effectiveness of a database

management system; if the cost of employing a protec

tion system is too high, it may not be used despite

the need for privacy controls.

Many of these requirements may conflict, e.g., flexi

bility, the adequacy of user interface, and the cost of

use. Consequently, balances, tradeoffs, and compromises

must be considered in practice.

A number of software packages provide access control

and related functions. The market for these programs

appears to be growing as users become more concerned about

security. Examples are ACF2, RACF, and Top Secret. Typical

functions provided by such packages are authenticating

users, maintaining access control information, checking

authorization to use files or other objects, logging, and

producing reports. RACF (Resource Access Control Facility)

for example, provides access control by: (1) Identifying

and verifying system users, (2) Authorizing access to sys

tem resources, (3) Logging and reporting of unauthorized

attempts to enter the system and to access to protected

resources. RACF maintains an access control list for each

www.manaraa.com

109

object. Users may belong to groups and receive all the

privileges of their group. RACF is basically an open sys

tem in that resources not defined to RACF are not pro

tected. ACF2 is a closed system, in which resources not

defined to ACF2 are protected. RACF can, however, provide

closed system protection for any specified set of

resources.

The presence of protection mechanisms does not

guarantee security. Penetration analysis (sometimes called

the "tiger
team"

approach) has helped locate security

weaknesses. But, like program testing, it does not prove

the absence of flaws. Even with advanced technology for

developing and verifying systems, it is unlikely systems

will be absolutely secure. Computer systems are extremely

complex and vulnerable to many subtle forms of attack.

There is one architectural approach that could help

in the verification of a security system. The objective of

it is to isolate the access checking mechanism in a small

system nucleus responsible for enforcing security. The

nucleus, called a "security kernel", mediates all access

requests to ensure they are permitted by the system's

security policies. The security of the system is esta

blished by proving the protection policies meet the

www.manaraa.com

110

requirements of the system, and that the kernel correctly

enforces the policies. If the kernel is small, the verifi

cation effort is considerably less than that required for

a complete operating system.

But there are other considerations to be taken, like

the trust between users of the database. The complete

solution of the protection problem must find a balance

between technical and nontechnical issues. More research

is required in both issues, especially on methods of

detecting and reporting violations and on coordinating

external regulations with internal protection mechanisms.

Database security will continue to be recognized as

an important goal. One can expect to see some transforma

tions of this goal, however, for a number of reasons.

First, new uses (such as the growing use of distributed

systems) for databases will impose new requirements.

Second, changes in hardware and software technology may

eliminate some of the old problems while introducing new

ones.

Office systems, offer a whole new set of problems,

since their databases consist largely of text and graphic

material (which may be noncoded information). Text and

graphic objects have complex structures and therefore may

consist of smaller objects of differing authorization

www.manaraa.com

Ill

characterist ics.

Further research will be seen in security of commer

cial systems, distributed databases, inference, theory of

authorization, and architecture for secure database sys

tems, as well as in the field of database audit and con

trol, especially as it relates to the DBMS.

www.manaraa.com

112

Appendix I -

Glossary

Access - the ability and the means necessary to approach,

to store or retrieve data.

Access Control - the process of limiting access to the

resources of a computer system only to authorized users,

programs and processes.

Access Control Mechanism - hardware or software features,

operating procedures, management procedures and various

combinations of these designed to detect and prevent unau

thorized access and to permit authorized access to a com

puter system.

Access Type - the nature of an access to a particular

resource; e. g. , read, write, execute, append, delete,

create.

Append Only
- a class of access privilege that permits the

user to add data only, not to read or write.

Authentication
- the act of identifying and verifying the

eligibility of an individual to access specific categories

of information.

Authorization
- the granting to a user, program or process

the right of access.

www.manaraa.com

113

Compartmentat ion -

keeping the data and programs of dif

ferent desired accessibility separated from each other,

separating the resources available to concurrent users.

Database - (1) a single file containing information in a

format applicable to any user's needs and available when

needed. (2) all information required to process a set of

one or more applications.

Database Administrator -

an EDP manager charged with

approving the design and implementation of database

management systems.

Database Management System (DBMS) - the totality of all

routines that provide access to data, enforce storage con

ventions and regulate the use of input-output devices for

a specified database.

Data-dependent protection -

protection of data at a level

commensurate with the sensitivity level of individual data

elements, rather than with the sensitivity of the entire

file which includes the data element.

Data security
- the protection of data from accidental or

malicious modification, destruction or disclosure.

Execute Only
- a type of access to a program that confers

upon the user the right to run it but not to read the code

nor alter it.

www.manaraa.com

114

Hand Geometry -

an identifying code derived from the

length of the fingers, the shape of finger endings, and

the translucency of the skin.

Ident i f icat ion - the process that enables, generally by

the use of unique machine-readable names, recognition of

users or resources as identical to those previously

described to a computer system.

Login -

a physical procedure in which a terminal user is

identified to the computer operating system prior to any

processing.

Need-to-know -

a requirement for a person to receive

information in order to perform his duties.

Password -

a protected word or a string of characters that

identify a user. Synonymous with codeword, keyword,
lock-

word.

Query Language -

a high-level language designed for a

speci fie set of transactions to interrogate a database.

Security
- mechanisms and techniques that control who may

use or modify the computer or the information stored in

it.

User
- individual who is accountable for some identifiable

set of activities in a computer system. May refer to a

www.manaraa.com

115

natural person, an entity (program or process) possessing

privileges equivalent to those of a natural person, or a

group of persons (class or project).

www.manaraa.com

116

BIBLIOGRAPHY

CBERT78 3 Bertis, V., Truxal, C. D. , and Ranweiler, J.

G. , "System/38 addressing and authorization",

IBM Svstem/38 Technical Developments ,
IBM Co>

poration, 1978, 51-54.

Discusses addressing, authorization,
and synchronization in System/38.

CCARR77 3 Carroll, J. M.

Butlerworth Publishers Inc., 1977.

locking

Computer Security. Boston:

A comprehensive overview of security topics

such as threats, security management considera

tions, physical security, communication secu

rity, and systems security.

CCHAM75 3 Chamberlin, D. D. , Gray, J. N. and Traiger, I.

L. , "Views, Authorization, and Locking in a

Relational Data Base System", AFIPS Conference

Proceedings. California (May 1975), 425-430.

This paper describes a mechanism that supports

the concepts of views, authorization, and lock

ing, within the context of SEQUEL language of

the System R relational database system. The

authors present examples of how SEQUEL is used,

in particular the way in which user views are

defined and how authorization and locking may

be supported by including access qualifiers in

the view definition.

CCHAM78 3 Chamberlin, D. D. et al. , "Data Base System

Authorization", Foundations of Secure Computa

tion, R. A. DeMillo ed. New York: Academic

Press Inc., 1978, 39-52.

CCLAY83 3

The author gives an overview of authorization

related topics such as authentication, central

ized vs. decentralized authorization and revo

cation of privileges.

Claybrook, B. G. , "Using Views in a Multilevel

Secure Database Management System", IEEE

Proceedings of the 1983 Symposium on Security

and Privacy. California (April, 1983), 4-13.

In this paper the author discusses the use of

views in database management systems that

www.manaraa.com

117

enforce user level discretionary and
nondiscre-

tionary access control policies. This discus
sion involves several issues such as how should

views be classified, what type of mechanism

should be used to define views, mapping between

views, etc.

CC0NW73 3 Conway, R. W.
, Maxwell, W. L. and Morgan, H.

D. , "On the Implementation of Security Measures

in Information Systems", Security and Privacy
in Computer Systems. California: Melville Pub

lishing Company, 1973, 244-266.

A "security
matrix"

is proposed, which is

equivalent to the access matrix of the basic

model. This is used as a functional model of a

security system, which separates data-dependent

and data independent access decisions. It pro

poses compiletime access decisions.

CC0NW78 3 Conway, A. J. , and Harvey, D. G. , "Usei

System/38 interface design considerations", IBM

Svstem/38 Technical Developments
, IBM Corpora

tion, 1978, 70-73.

Provides an overview of System/38 primary user

interface. Describes objectives, constraints,

and rationale.

CDAHL78 3 Dahley, S. H, et. al. , "System/38 high-level

machine", IBM System/38 Technical Deve 1 opment s ,

1978, 47-50. Characterizes the System/38

high-level machine instruction interface.

Describes microcode functions and the rationale

for providing them.

CDALE74 3 Daley, R. C. and Donohue, J. P. , "Security and

Authorization - Semantics and Examples", Data

Security and Data Processing
-

Study Result :

MIT. Vol 4. IBM Corporation, (June, 1974),
135-150.

Result of an MIT study on security facilities

of IBM's RSS (Resource Security System).

Discusses need of decentralization of authori

zation functions, grouping of users and data,
program-to-file authorization, relevant access

types for this environment, and a list of

suggestions on how to improve that system.

www.manaraa.com

US

An Introduction to Database Sys-CDATE83 3 Date, C. J. ,

terns, Vol 2. Reading: Add i sondes ley Publishing

Company, 1983.

Covers systems aspects such as recovery,

integrity, concurrency, and security.

CDATE84 3 Date, C. J.
,

A Guide to DB2. Reading: Addison-

Wesley Publishing Company, 1984.

Presents a detailed description of the DB2 IBM

product. It has comprehensive coverage of the

SQL language and a description of the rela

tional database model.

CDENN82 3 Denning,

Reading :

1982.

D. E.
, Cryptography and Data Security.

Addison-Wesley Publishing Company,

Cryptographic techniques, information flow con

trols, inference controls and access controls.

In relation to this last topic it describes the

basic principles of mechanisms that control

access by subjects to objects. Discusses the

access-matrix model, authorization list and

capability list.

CFAGI78 3 Fagin, R. , "On an Authorization Mechanism", ACM

TODS 3, 3 (September, 1978), 310-319.

Makes modifications to the model by Griffiths

and Wade and proves correctness for the modi

fied mechanism.

CFERN75 3 Fernandez, E. B. , Summers, R. C. and Coleman,

C. D. , "An Authorization Model for a Shared

Database", Proceedings 1975 ACM SIGMQD Interna-

t ional Conference, San Jose,

1975), 23-31.

California. (May,

The authorization model for the LASC system.

The model includes: (1) the use of applications

as context for user rights, (2) the use of

predicates that can depend on any data in the

system as part of the access rules, and (3) the

use of ordered access types. Enforcement of

this model at compile time is discussed.

CFERNS1 3 Fernandez,
Database

E. B.
, Summers,

Security and

and Wood, C.

_

Integrity. Reading

Addison-Wesley Publishing Company, 1981.

www.manaraa.com

119

In depth presentation of security and integrity
issues of information maintained in databases.

CFRIE73 3 Friedman, T. D.
, "The Authorization Problem in

Shared Files", Security and Privacy in Computer

Systems. California: Melville Publishing
Corn-

pany, 1973, 159-185.

Presents the problem of authorization in shared

systems. A hypothetical model of an authoriza

tion system is described.

CGAIN78 3 Gaines, R. S. and Shapiro, N. Z.
,

"Some Secu

rity Principles and their Application to Com

puter Security", Foundat ions of Secure Cornputa-

t ion. R. A. DeMillo ed. New York: Academic

Press, 1978, 223-234.

The authors examine general ideas of security

and apply them to the problem of computer secu

rity. They point out that the chief method for

computer security has been the barrier, i.e.,

the access control mechanism.

CG0GU82 3 Goguen, J. A. and Mesequer,

cies and Security Models",

the 1982 Symposium on Security

California (April, 1982), 11-20.

J., "Security
Poli-

IEEE Proceedings of

and Privacy.

The paper describes an approach to security

which is based on: modeling the information

processing system as a capability system,

defining security policies as a set of nonin

terference assertions and verifying that a

given system satisfies a given policy.

CGRAH79 3 Graham, G. S. and Denning,

Principles and Practices",

the Spring Joint Computer

(1979), 417-429.

P. S. , "Protection -

AFIPS Proceedings of

Conference, Vo 1 40

Lampson's model is interpreted in more detail.

In particular,
creation and deletion of

objects, granting of access to objects, and

sharing by untrustworthy subsystems are

covered. An argument for the correctness of the

model is also given, and ways of implementing

it are discussed.

CGRIF76 3 Griffiths, P.P. and Wade, B. W. , "An Authoriza

tion Mechanism for Relational Database

www.manaraa.com

120

System", ACM TODS 1, 3 (September, 1976),
242-

255.

Covers authorization system for System R. The

paper discusses authorization commands,

representation of the authorization informa

tion, granting and revoking rights, authoriza

tion checking, and the use of views for author

izat ion.

CHENR78 3 Henry, G. G.
, "Introduction to IBM Sysyern/38

architecture", IBM System/38 Technical Develop
ments. IBM Corporation, 1978, 3-6.

Support functions are summarized and

ture concepts are described.

arch i tec

CH0FF77 J Hoffman, L. J. , Modern Methods for Computer

Security and Privacy. New Jersey: Prentice-

Hall, Inc., 1977.

The book covers topics as authentication and

identification, authorization policies, log

ging, traditional and modern methods of cryp

tography, operating systems, mathematical

models, computer security (operational and phy

sical concerns) and legal aspects of computer

privacy.

CHSIA79 3 Hsiao, D. K.
, Kerr, D. S. and Madnick, S. E.

,

Computer Security. New York: Academic Press,
Inc. 1979.

The book addresses computer security topics as

privacy, operational security, physical secu

rity, hardware security, cryptography, operat

ing systems security and database security. On

this last topic it discusses access decisions,

access paths, access authorization and imple

mentation of security features.

CIBMCS0a3 IBM System/38 Planning and Review Controls, IBM

Corporation. November, 1980.

Report result of a study analysis to be used as

a guide for planning and reviewing controls by

management and auditors of the organization

possessing a System/38.

CIBMC80b3 IBM System/38 Functional Concepts Manual, IBM

Corporation. June, 1980.

www.manaraa.com

121

Product manual that describes the functions

provided by the System/38 interface machine.

CIBMCS4 3 Database 2 System Planning and Administration

Guide, IBM Corporation. San Jose: Programming

Publishing, 1984.

Product manual that describes how to design DB2

databases, and how to provide security, among

other design issues.

CJ0NE7S 3 Jones, A. K. , "Protection Mechanism Models:

Their Usefulness", Foundations of Secure Cornpu-

tat ion. R. A. DeMillo ed. New York: Academic

Press, Inc. , 1978, 237-252.

An extensive presentation of the Take-Grant

system, as well as an evaluation of its useful

ness to solve security problems.

CLAND81 3 Landwehr, C. E. , "Formal Models for Computer

Security", ACM Comput ing Surveys, 13, 3 (Sep

tember 1981), 247-278.

Quite exhaustive presentation of the mostly

used security models is presented, including
access matrix, Bell and LaPadua, and Take-Grant

among others.

CLAMP75 3 Larnpson, B. W. , "Protection", Protection of

Information in Computer Systems. IEEE COMPCON,
September 1975, 215-221.

Original access matrix model presentation which

served as a base for further development of

such model.

CLEIS82 3 Leiss, E. L. , Principles of Data Security. New

York: Plenum Press, 1982.

The author discusses, with a rather theoretical

and mathematical approach, issues on security

of statistical databases, authorization mechan

isms, cryptosyst ems, and user's rights and lim

itations on access to certain data.

CLIPN82 3 Lipner, S. B. , "Non-discretionary Controls for

Commercial Applications", IEEE Proceedings of

the 1982 Symposium on Security and Privacy.

California (April, 1982), 2-10.

www.manaraa.com

122

Presents a possible application of the lattice

model (military security system) to commercial

systems.

CMcLE77 3 McLeod, D.
, "A Framework for Data Base Protec

tion and its Application to the INGRES and Sys

tem R Data Base Management Systems", CQMPSAC77

Proceedings. Chicago, (November, 1977),
342-

348.

This paper introduces a set of requirements for

protection in a database environment, which

include: variable granularity of access rules,

control of access to derived information, lim

iting access to operations, and the ability to

distribute authority. INGRES and SYSTEM R are

then discussed in terms of these criteria.

CMIRA80 3 Miranda, S. M. , "Aspects of Data Security in

General -purpose Data Base Management Systems",
IEEE Data Security and Privacy, California,

(April, 1980), 46-58.

Presents the various aspects of data security

in a general -purpose database management system

(DBMS) in contrast with those of operating sys

tems.

CPETE79 3 Petersen, H. E. and Turn, R. , "System Implica

tion of Information Privacy", Security and

Privacy in Computer Systems. California: Mel-

ville PubTishing Company, 1981, 76-95.

The author makes an exposition of privacy

issues in the context of shared and distributed

systems.

CPINN78 3 Pinnow, K. W. , Ranweiler, J. G. , and Miller, J.

F. ,
"System/38 object-oriented architecture",

IBM System/38 Technical Developments. IBM Cor

poration, 1978, 55-58.

Discusses the concepts, purpose, and charac

teristics of System/38 machine objects.

CSALT75 3 Saltzer, J. H. and Schroeder, M. D.
, "The Pro

tection of Information in Computer Systems'",
Protection of Information in Computer Systems.

IEEE COMPCON, (September, 1975), 57-200.

www.manaraa.com

123

The paper provides a comprehensive overview of

computer protection methods. The paper

describes functions, design principles, exam

ples of elementary protection and authentica

tion mechanisms, principles of protection

architecture and the relation between capabil

ity systems and access control list systems.

Issues in

DBMS Model.

CSCHA77 3 Schaefer, M. , "On

Computer Systems",
D. A. Jardin ed. North-Holland Publishing Co.

1977, 131-146.

Certain Security
The ANSI /SPARC

The concept of controlled data sharing is exam

ined in the context of volatile databases. In

particular, alternative data classification

schemes, commercial and military, and their

implementat ional implications are discussed.

CSHAR79 3 Sharma, K. D. and Sharma, Y. R. , "An Access

Control Facility for Relational Data Base Sys

tems", Informat ion Systems, Vol 4, no 2. Great

Britain: Pergamon Press LTD, 1979, 33-39.

A set of language facilities for the specifica

tion of security requirements in a relational

database is presented. An attempt is made to

have a database language unified from the point

of view of data storage/retrieval, computation

and protect ion.

CST0N74 3 Stonebraker, M. "Access Control in a Relational

Data Base Management System by Query Modifica

tion", Proceedings 1974 ACM National Confer-

ence. San Diego, California, (November, 1974),
180-184.

Presents the access control system being imple

mented in INGRES. Examples using the QUEL

language commands are used to present the sys

tem.

CST0N76a3 Rubinstein P. , "TheStonebraker, M. and

Protection System", Proceedings

National Conference. California.

INGRES

1976 ACM

The design decisions for the security system of

INGRES are justified. In particular, the paper

discusses the role and power of the DBA, the

protection language, reasons for a centralized

DBA, the policy about access violations, and

www.manaraa.com

124

the reason for not having auxiliary procedures.

CST0N76b3 Stonebraker, M. , "The Design and Implementation

of INGRES", ACM TODS, Vol 1, No. 3, September

1976, 189-222.

The INGRES database management system is

described. Design decisions, support for

integrity constraints, views and protection are

discussed.

CSUMM84 3 Summers, R.

rity", IBM

309-325.

C. , "An Overview

System Journal

of Computer Secu-

23, no. 4, (1984),

Presents an overview of computer security

including concepts, techniques, and measures

relating to the protection of computing systems

and the information they maintain. Security
strategies are considered. Security models are

surveyed.

CTURN75 3 Turn, R. and Ware, W. H. , "Privacy and Security
in Computer Systems", Protect ion of Informat ion

in Computer Systems. IEEE COMPCON, (September,
1975) , 49-56.

Discusses in general security concepts such as

privacy, identification, computer security,

access control, integrity, and protection

costs.

CWALK77 3 Walker, B. J. and Blake, I. F.
, Computer Secu-

rity and Protection Structures. Pennsylvania:

Dowden, Hutchinson & Ross, Inc., 1977.

Presents security threats and countermeasures

including physical safeguards and file safe

guards. Discusses access control levels,
storage of access control information, and

enforcement schemes for access control.

CWATS78a3 Watson, C. T. , and Aberle, G. F.
, "System/38

machine database support", IBM System/38 Techn-

ical Developments. IBM Corporation, 1978, 59-

Describes the database machine support and

discusses performance, security, integrity, and

ease-of-use cons i derat ions.

www.manaraa.com

125

CWATS7Sb3 Watson, C. T.
, Benson, F. E. , and Taylor, P.

T. , "Systern/38 data base concepts", IBM Sys

tem/38 Technical Developments. IBM Corporation,

1978, 78-80.

Describes major database characteristics

their rationale.

and

CW00D79a3 Wood, C. and Fernandez, E. B.

Authorization in Database

"Decentral ized

System", Fifth

International Conference on VLDB, Brazil, 1979,

352-359.

A model of authorization for decentralized

administration is developed. Mechanisms for the

delegation of administration and its revocation

are presented. A possible scheme for the dis

tribution of authorization-related data through

a distributed processing network is described.

CW00D79b3 Wood, C. , Summers, R. C. and Fernandez, E. B. ,

"Authorization in Multilevel Database Models",

Information Systems, Vol 4, no. 2. Great Bri

tain: Pergamon Press LTD, 1979, 155-162.

Analyzes the consistency of authorization rules

written at the conceptual level and at the

external level of a multilevel database archi

tecture. The validation of access requests

against authorization rules is also discussed.

CWUMS81 3 Wu,
IEEE

M. S. , "Hierarchical

rity

113-124.

Proceedings

and Privacy

of the

Protection Systems",
1981 Symposium on

Secu-

California, (April, 1981)

The Take-Grant model developed by Jones, Lipton

and Snyder is extended in order to present and

study two hierarchical protection systems: tree

systems and acyclic systems.

www.manaraa.com

126

I, Diana Anglero, prefer to be contacted each time a request

for reproduction is made. I can be reached at the follow

ing address:

1502 Farrar St.

Antonsant i

Rio Piedras, Puerto Rico 00927

Date:
Au^(JSt_J3^.Al^

	Rochester Institute of Technology
	RIT Scholar Works
	8-12-1985

	Access control models: Authorization mechanisms for database management systems
	Diana Anglero
	Recommended Citation

